Access the full text.
Sign up today, get DeepDyve free for 14 days.
PurposeThe purpose of this paper is the fast and accurate modelling of surface-mounted Axial-Flux Permanent-Magnet (AFPM) machines equipped with cylindrical magnets using quasi-3D approach. Furthermore, the accuracy of the method is improved by using leakage coefficient, saturation coefficient and an appropriate permeance function.Design/methodology/approachQuasi-3D approach is used for fast and accurate modelling of AFPM machines. Air-gap flux density distribution, induced back EMF, and produced cogging torque are calculated using the proposed method with reasonable accuracy.FindingsThe results obtained by quasi-3D approach compared to Finite-Element-Analyses (FEA) shows how accurate, fast and efficient this method is. It is proved that, this method can be successfully applied to evaluate the performance of the AFPM machines.Originality/valueEffectiveness and accuracy of quasi-3D approach is assessed on different AFPM machines. Furthermore, to increase the accuracy of computations, the effects of the magnetic potential drop at iron parts of the machine are taken into account by using a saturation coefficient. Besides, the influence of the slot opening on the flux density distribution is taken into account by using an appropriate relative permeance function.
COMPEL: Theinternational Journal for Computation and Mathematics in Electrical and Electronic Engineering – Emerald Publishing
Published: Jul 3, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.