Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

An investigation on fire hazard and smoke toxicity of epoxy FRP composites

An investigation on fire hazard and smoke toxicity of epoxy FRP composites PurposeThe purpose of this study is assessment of fire and smoke hazards of some fiber reinforced polymers (FRP). The use of FRP strengthening strips has been found rapid growth in construction industry of Iran and many other countries. However, the fire and smoke hazards of these materials in both construction and use phases need to be determined and the appropriated measures against fire should be taken.Design/methodology/approachThe fire hazards of two types of fibre-reinforced epoxy composites (graphite fibre-reinforced polymer and carbon fibre-reinforced polymer) were investigated in bench-scale using cone calorimeter test method. Time to ignition, heat release rate, total heat release, smoke release and carbon monoxide production were measured and analysed. Time to flashover of an assumed room lined with the tested FRP was analysed with Conetools software. Smoke production and toxicity of the considered composites were also analysed and discussed, using the fractional effective dose parameter.FindingsThe results showed that the tested FRP products had a high fire hazard and a potential high contribution to fire growth. The tests also proved that the used epoxy resin had a low glass transition temperature, around 50°C; therefore, the mechanical strength of the product could be drastically reduced at first stages of a probable fire incident. This also showed that a regular thermal barrier, typically used for protection of plastic foams against fire, could not be sufficient for the protection of strengthening FRP composites.Originality/valueThis research was carried out for the first time for the materials used in construction industry of Iran. The results and achievements were very useful for safe use and development of proper details of application of the system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Disaster Resilience in the Built Environment Emerald Publishing

An investigation on fire hazard and smoke toxicity of epoxy FRP composites

Loading next page...
 
/lp/emerald-publishing/an-investigation-on-fire-hazard-and-smoke-toxicity-of-epoxy-frp-CT0Ih0QgwS

References (10)

Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1759-5908
DOI
10.1108/IJDRBE-07-2016-0030
Publisher site
See Article on Publisher Site

Abstract

PurposeThe purpose of this study is assessment of fire and smoke hazards of some fiber reinforced polymers (FRP). The use of FRP strengthening strips has been found rapid growth in construction industry of Iran and many other countries. However, the fire and smoke hazards of these materials in both construction and use phases need to be determined and the appropriated measures against fire should be taken.Design/methodology/approachThe fire hazards of two types of fibre-reinforced epoxy composites (graphite fibre-reinforced polymer and carbon fibre-reinforced polymer) were investigated in bench-scale using cone calorimeter test method. Time to ignition, heat release rate, total heat release, smoke release and carbon monoxide production were measured and analysed. Time to flashover of an assumed room lined with the tested FRP was analysed with Conetools software. Smoke production and toxicity of the considered composites were also analysed and discussed, using the fractional effective dose parameter.FindingsThe results showed that the tested FRP products had a high fire hazard and a potential high contribution to fire growth. The tests also proved that the used epoxy resin had a low glass transition temperature, around 50°C; therefore, the mechanical strength of the product could be drastically reduced at first stages of a probable fire incident. This also showed that a regular thermal barrier, typically used for protection of plastic foams against fire, could not be sufficient for the protection of strengthening FRP composites.Originality/valueThis research was carried out for the first time for the materials used in construction industry of Iran. The results and achievements were very useful for safe use and development of proper details of application of the system.

Journal

International Journal of Disaster Resilience in the Built EnvironmentEmerald Publishing

Published: Jun 12, 2017

There are no references for this article.