Access the full text.
Sign up today, get DeepDyve free for 14 days.
Survey-based studies suggest that search engines are trusted more than social media or even traditional news, although cases of false information or defamation are known. The purpose of this paper is to analyze query suggestion features of three search engines to see if these features introduce some bias into the query and search process that might compromise this trust. The authors test the approach on person-related search suggestions by querying the names of politicians from the German Bundestag before the German federal election of 2017.Design/methodology/approachThis study introduces a framework to systematically examine and automatically analyze the varieties in different query suggestions for person names offered by major search engines. To test the framework, the authors collected data from the Google, Bing and DuckDuckGo query suggestion APIs over a period of four months for 629 different names of German politicians. The suggestions were clustered and statistically analyzed with regards to different biases, like gender, party or age and with regards to the stability of the suggestions over time.FindingsBy using the framework, the authors located three semantic clusters within the data set: suggestions related to politics and economics, location information and personal and other miscellaneous topics. Among other effects, the results of the analysis show a small bias in the form that male politicians receive slightly fewer suggestions on “personal and misc” topics. The stability analysis of the suggested terms over time shows that some suggestions are prevalent most of the time, while other suggestions fluctuate more often.Originality/valueThis study proposes a novel framework to automatically identify biases in web search engine query suggestions for person-related searches. Applying this framework on a set of person-related query suggestions shows first insights into the influence search engines can have on the query process of users that seek out information on politicians.
Online Information Review – Emerald Publishing
Published: Jun 9, 2020
Keywords: Text mining; Politics; Bias; Regression analysis; Query suggestions; Web search engines
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.