Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

An extensive study of authorship authentication of Arabic articles

An extensive study of authorship authentication of Arabic articles PurposeThe authorship authentication (AA) problem is concerned with correctly attributing a text document to its corresponding author. Historically, this problem has been the focus of various studies focusing on the intuitive idea that each author has a unique style that can be captured using stylometric features (SF). Another approach to this problem, known as the bag-of-words (BOW) approach, uses keywords occurrences/frequencies in each document to identify its author. Unlike the first one, this approach is more language-independent. This paper aims to study and compare both approaches focusing on the Arabic language which is still largely understudied despite its importance.Design/methodology/approachBeing a supervised learning problem, the authors start by collecting a very large data set of Arabic documents to be used for training and testing purposes. For the SF approach, they compute hundreds of SF, whereas, for the BOW approach, the popular term frequency-inverse document frequency technique is used. Both approaches are compared under various settings.FindingsThe results show that the SF approach, which is much cheaper to train, can generate more accurate results under most settings.Practical implicationsNumerous advantages of efficiently solving the AA problem are obtained in different fields of academia as well as the industry including literature, security, forensics, electronic markets and trading, etc. Another practical implication of this work is the public release of its sources. Specifically, some of the SF can be very useful for other problems such as sentiment analysis.Originality/valueThis is the first study of its kind to compare the SF and BOW approaches for authorship analysis of Arabic articles. Moreover, many of the computed SF are novel, while other features are inspired by the literature. As SF are language-dependent and most existing papers focus on English, extra effort must be invested to adapt such features to Arabic text. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Web Information Systems Emerald Publishing

An extensive study of authorship authentication of Arabic articles

Loading next page...
 
/lp/emerald-publishing/an-extensive-study-of-authorship-authentication-of-arabic-articles-X8PuIpSfJC
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1744-0084
DOI
10.1108/IJWIS-03-2016-0011
Publisher site
See Article on Publisher Site

Abstract

PurposeThe authorship authentication (AA) problem is concerned with correctly attributing a text document to its corresponding author. Historically, this problem has been the focus of various studies focusing on the intuitive idea that each author has a unique style that can be captured using stylometric features (SF). Another approach to this problem, known as the bag-of-words (BOW) approach, uses keywords occurrences/frequencies in each document to identify its author. Unlike the first one, this approach is more language-independent. This paper aims to study and compare both approaches focusing on the Arabic language which is still largely understudied despite its importance.Design/methodology/approachBeing a supervised learning problem, the authors start by collecting a very large data set of Arabic documents to be used for training and testing purposes. For the SF approach, they compute hundreds of SF, whereas, for the BOW approach, the popular term frequency-inverse document frequency technique is used. Both approaches are compared under various settings.FindingsThe results show that the SF approach, which is much cheaper to train, can generate more accurate results under most settings.Practical implicationsNumerous advantages of efficiently solving the AA problem are obtained in different fields of academia as well as the industry including literature, security, forensics, electronic markets and trading, etc. Another practical implication of this work is the public release of its sources. Specifically, some of the SF can be very useful for other problems such as sentiment analysis.Originality/valueThis is the first study of its kind to compare the SF and BOW approaches for authorship analysis of Arabic articles. Moreover, many of the computed SF are novel, while other features are inspired by the literature. As SF are language-dependent and most existing papers focus on English, extra effort must be invested to adapt such features to Arabic text.

Journal

International Journal of Web Information SystemsEmerald Publishing

Published: Apr 18, 2017

References