Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

An evaluation of uplift mapping languages

An evaluation of uplift mapping languages PurposeThis paper aims to evaluate the state-of-the-art in CSV uplift tools. Based on this evaluation, a method that incorporates data transformations into uplift mapping languages by means of functions is proposed and evaluated. Typically, tools that map non-resource description framework (RDF) data into RDF format rely on the technology native to the source of the data when data transformation is required. Depending on the data format, data manipulation can be performed using underlying technology, such as relational database management system (RDBMS) for relational databases or XPath for XML. For CSV/Tabular data, there is no such underlying technology, and instead, it requires either a transformation of source data into another format or pre/post-processing techniques.Design/methodology/approachTo evaluate the state-of-the-art in CSV uplift tools, the authors present a comparison framework and have applied it to such tools. A key feature evaluated in the comparison framework is data transformation functions. They argue that existing approaches for transformation functions are complex – in that a number of steps and tools are required. The proposed method, FunUL, in contrast, defines functions independent of the source data being mapped into RDF, as resources within the mapping itself.FindingsThe approach was evaluated using two typical real-world use cases. The authors have compared how well our approach and others (that include transformation functions as part of the uplift mapping) could implement an uplift mapping from CSV/Tabular into RDF. This comparison indicates that the authors’ approach performs well for these use cases.Originality/valueThis paper presents a comparison framework and applies it to the state-of-the-art in CSV uplift tools. Furthermore, the authors describe FunUL, which, unlike other related work, defines functions as resources within the uplift mapping itself, integrating data transformation functions and mapping definitions. This makes the generation of RDF from source data transparent and traceable. Moreover, as functions are defined as resources, these can be reused multiple times within mappings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Web Information Systems Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/an-evaluation-of-uplift-mapping-languages-1Loz53owZD

References (31)

Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1744-0084
DOI
10.1108/IJWIS-04-2017-0036
Publisher site
See Article on Publisher Site

Abstract

PurposeThis paper aims to evaluate the state-of-the-art in CSV uplift tools. Based on this evaluation, a method that incorporates data transformations into uplift mapping languages by means of functions is proposed and evaluated. Typically, tools that map non-resource description framework (RDF) data into RDF format rely on the technology native to the source of the data when data transformation is required. Depending on the data format, data manipulation can be performed using underlying technology, such as relational database management system (RDBMS) for relational databases or XPath for XML. For CSV/Tabular data, there is no such underlying technology, and instead, it requires either a transformation of source data into another format or pre/post-processing techniques.Design/methodology/approachTo evaluate the state-of-the-art in CSV uplift tools, the authors present a comparison framework and have applied it to such tools. A key feature evaluated in the comparison framework is data transformation functions. They argue that existing approaches for transformation functions are complex – in that a number of steps and tools are required. The proposed method, FunUL, in contrast, defines functions independent of the source data being mapped into RDF, as resources within the mapping itself.FindingsThe approach was evaluated using two typical real-world use cases. The authors have compared how well our approach and others (that include transformation functions as part of the uplift mapping) could implement an uplift mapping from CSV/Tabular into RDF. This comparison indicates that the authors’ approach performs well for these use cases.Originality/valueThis paper presents a comparison framework and applies it to the state-of-the-art in CSV uplift tools. Furthermore, the authors describe FunUL, which, unlike other related work, defines functions as resources within the uplift mapping itself, integrating data transformation functions and mapping definitions. This makes the generation of RDF from source data transparent and traceable. Moreover, as functions are defined as resources, these can be reused multiple times within mappings.

Journal

International Journal of Web Information SystemsEmerald Publishing

Published: Nov 6, 2017

There are no references for this article.