An efficient algorithm for U-type assembly line re-balancing problem with stochastic task times

An efficient algorithm for U-type assembly line re-balancing problem with stochastic task times PurposeChanging the product characteristics and demand quantity resulting from the variability of the modern market leads to re-assigned tasks and changing the cycle time on the production line. Therefore, companies need re-balancing of their assembly line instead of balancing. The purpose of this paper is to propose an efficient algorithm approach for U-type assembly line re-balancing problem using stochastic task times.Design/methodology/approachIn this paper, a genetic algorithm is proposed to solve approach for U-type assembly line re-balancing problem using stochastic task times.FindingsThe performance of the genetic algorithm is tested on a wide variety of data sets from literature. The task times are assumed normal distribution. The objective is to minimize total re-balancing cost, which consists of workstation cost, operating cost and task transposition cost. The test results show that proposed genetic algorithm approach for U-type assembly line re-balancing problem performs well in terms of minimizing total re-balancing cost.Practical implicationsDemand variation is considered for stochastic U-type re balancing problem. Demand change also affects cycle time of the line. Hence, the stochastic U-type re-balancing problem under four different cycle times are analyzed to present practical case.Originality/valueAs per the authors’ knowledge, it is the first time that genetic algorithm is applied to stochastic U-type re balancing problem. The large size data set is generated to analyze performance of genetic algorithm. The results of proposed algorithm are compared with ant colony optimization algorithm. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Assembly Automation Emerald Publishing

An efficient algorithm for U-type assembly line re-balancing problem with stochastic task times

Assembly Automation, Volume 39 (4): 15 – Sep 2, 2019

Loading next page...
 
/lp/emerald-publishing/an-efficient-algorithm-for-u-type-assembly-line-re-balancing-problem-rg0gMZq0ol
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0144-5154
DOI
10.1108/AA-07-2018-106
Publisher site
See Article on Publisher Site

Abstract

PurposeChanging the product characteristics and demand quantity resulting from the variability of the modern market leads to re-assigned tasks and changing the cycle time on the production line. Therefore, companies need re-balancing of their assembly line instead of balancing. The purpose of this paper is to propose an efficient algorithm approach for U-type assembly line re-balancing problem using stochastic task times.Design/methodology/approachIn this paper, a genetic algorithm is proposed to solve approach for U-type assembly line re-balancing problem using stochastic task times.FindingsThe performance of the genetic algorithm is tested on a wide variety of data sets from literature. The task times are assumed normal distribution. The objective is to minimize total re-balancing cost, which consists of workstation cost, operating cost and task transposition cost. The test results show that proposed genetic algorithm approach for U-type assembly line re-balancing problem performs well in terms of minimizing total re-balancing cost.Practical implicationsDemand variation is considered for stochastic U-type re balancing problem. Demand change also affects cycle time of the line. Hence, the stochastic U-type re-balancing problem under four different cycle times are analyzed to present practical case.Originality/valueAs per the authors’ knowledge, it is the first time that genetic algorithm is applied to stochastic U-type re balancing problem. The large size data set is generated to analyze performance of genetic algorithm. The results of proposed algorithm are compared with ant colony optimization algorithm.

Journal

Assembly AutomationEmerald Publishing

Published: Sep 2, 2019

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off