An assessment of flight efficiency based on the point merge system at metroplex airports

An assessment of flight efficiency based on the point merge system at metroplex airports PurposeMetroplex is a system of two or more airports, in physical proximity, with highly interdependent arrival and departure operations. The purpose of this study is the construction of an efficient and effective air route model based on the point merge system (PMS) to reduce aircraft fuel consumption and CO2 emissions for three metroplex airports in Istanbul terminal control area (TMA).Design/methodology/approachA PMS arrival route model is constructed for metroplex airports. In the proposed model, two situations are taken into consideration: for delay which can be defined as flying on sequencing legs (PMSdel) and for no delay (PMSno del). An empirical model is developed using a data set including the flight data records of ten actual B737-800 domestic flights. With this empirical model, both the baseline and the PMS models (PMSdel and PMSno del) are compared in terms of fuel consumption, CO2 emissions and flight distance and time as a theoretical computation.FindingsIn the proposed PMSno del arrival route model, according to different entry points for Istanbul Ataturk International Airport (LTBA), the analyses show an average reduction of 26 per cent in flight time, 24.5 per cent in flight distance, 17 per cent in fuel burned and CO2 emissions; in addition, for Sabiha Gökcen International Airport (LTFJ) there are 34, 23 and 32 per cent average savings for flight time, flight distance and fuel burned together with CO2 emissions obtained, respectively. Even if the PMSdel model, for LTFJ except only one entry point, for LTBA except two entry points, better results are obtained than baseline.Practical implicationsThe point merge model for metroplex airports in this paper can be applied by airspace designers and Air Navigation Service Providers to perform efficient and effective arrival routes.Originality/valueIn this study, a point merge model is constructed for metroplex airports. Quantitative results, using an empirical model, are achieved in terms of fuel consumption, CO2 emissions and flight distance and time at metroplex airports. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Aircraft Engineering and Aerospace Technology: An International Journal Emerald Publishing

An assessment of flight efficiency based on the point merge system at metroplex airports

Loading next page...
 
/lp/emerald-publishing/an-assessment-of-flight-efficiency-based-on-the-point-merge-system-at-79f8Iyj7QJ
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1748-8842
DOI
10.1108/AEAT-06-2016-0097
Publisher site
See Article on Publisher Site

Abstract

PurposeMetroplex is a system of two or more airports, in physical proximity, with highly interdependent arrival and departure operations. The purpose of this study is the construction of an efficient and effective air route model based on the point merge system (PMS) to reduce aircraft fuel consumption and CO2 emissions for three metroplex airports in Istanbul terminal control area (TMA).Design/methodology/approachA PMS arrival route model is constructed for metroplex airports. In the proposed model, two situations are taken into consideration: for delay which can be defined as flying on sequencing legs (PMSdel) and for no delay (PMSno del). An empirical model is developed using a data set including the flight data records of ten actual B737-800 domestic flights. With this empirical model, both the baseline and the PMS models (PMSdel and PMSno del) are compared in terms of fuel consumption, CO2 emissions and flight distance and time as a theoretical computation.FindingsIn the proposed PMSno del arrival route model, according to different entry points for Istanbul Ataturk International Airport (LTBA), the analyses show an average reduction of 26 per cent in flight time, 24.5 per cent in flight distance, 17 per cent in fuel burned and CO2 emissions; in addition, for Sabiha Gökcen International Airport (LTFJ) there are 34, 23 and 32 per cent average savings for flight time, flight distance and fuel burned together with CO2 emissions obtained, respectively. Even if the PMSdel model, for LTFJ except only one entry point, for LTBA except two entry points, better results are obtained than baseline.Practical implicationsThe point merge model for metroplex airports in this paper can be applied by airspace designers and Air Navigation Service Providers to perform efficient and effective arrival routes.Originality/valueIn this study, a point merge model is constructed for metroplex airports. Quantitative results, using an empirical model, are achieved in terms of fuel consumption, CO2 emissions and flight distance and time at metroplex airports.

Journal

Aircraft Engineering and Aerospace Technology: An International JournalEmerald Publishing

Published: Jan 2, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off