Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

An adjoint‐based design methodology for CFD problems

An adjoint‐based design methodology for CFD problems A complete CFD design methodology is presented. The main components of this methodology are a general edge‐based compressible/incompressible flow solver; a continuous adjoint formulation for the gradient computations; a steepest descent technique for the change of design variables; evaluation of the gradient of the discretized flow equations with respect to mesh by finite differences; a CAD‐free pseudo‐shell surface parametrization, allowing every point on the surface to be optimized to be used as a design parameter; and a level type scheme for the movement of the interior points. Several examples are included to demonstrate the methodology developed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Numerical Methods for Heat & Fluid Flow Emerald Publishing

An adjoint‐based design methodology for CFD problems

Loading next page...
 
/lp/emerald-publishing/an-adjoint-based-design-methodology-for-cfd-problems-m0EzrqFcck
Publisher
Emerald Publishing
Copyright
Copyright © 2004 Emerald Group Publishing Limited. All rights reserved.
ISSN
0961-5539
DOI
10.1108/09615530410544292
Publisher site
See Article on Publisher Site

Abstract

A complete CFD design methodology is presented. The main components of this methodology are a general edge‐based compressible/incompressible flow solver; a continuous adjoint formulation for the gradient computations; a steepest descent technique for the change of design variables; evaluation of the gradient of the discretized flow equations with respect to mesh by finite differences; a CAD‐free pseudo‐shell surface parametrization, allowing every point on the surface to be optimized to be used as a design parameter; and a level type scheme for the movement of the interior points. Several examples are included to demonstrate the methodology developed.

Journal

International Journal of Numerical Methods for Heat & Fluid FlowEmerald Publishing

Published: Sep 1, 2004

Keywords: Finite element analysis; Optimization techniques; Differential equations; Compressible flow

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month