Purpose – Most studies of power‐law fluids are carried out using stress‐based system of Navier‐Stokes equations; and least‐squares finite element models for vorticity‐based equations of power‐law fluids have not been explored yet. Also, there has been no study of the weak‐form Galerkin formulation using the reduced integration penalty method (RIP) for power‐law fluids. Based on these observations, the purpose of this paper is to fulfill the two‐fold objective of formulating the least‐squares finite element model for power‐law fluids, and the weak‐form RIP Galerkin model of power‐law fluids, and compare it with the least‐squares finite element model. Design/methodology/approach – For least‐squares finite element model, the original governing partial differential equations are transformed into an equivalent first‐order system by introducing additional independent variables, and then formulating the least‐squares model based on the lower‐order system. For RIP Galerkin model, the penalty function method is used to reformulate the original problem as a variational problem subjected to a constraint that is satisfied in a least‐squares (i.e. approximate) sense. The advantage of the constrained problem is that the pressure variable does not appear in the formulation. Findings – The non‐Newtonian fluids require higher‐order polynomial approximation functions and higher‐order Gaussian quadrature compared to Newtonian fluids. There is some tangible effect of linearization before and after minimization on the accuracy of the solution, which is more pronounced for lower power‐law indices compared to higher power‐law indices. The case of linearization before minimization converges at a faster rate compared to the case of linearization after minimization. There is slight locking that causes the matrices to be ill‐conditioned especially for lower values of power‐law indices. Also, the results obtained with RIP penalty model are equally good at higher values of penalty parameters. Originality/value – Vorticity‐based least‐squares finite element models are developed for power‐law fluids and effects of linearizations are explored. Also, the weak‐form RIP Galerkin model is developed.
Engineering Computations – Emerald Publishing
Published: Oct 11, 2011
Keywords: Finite element method; Least‐squares models; Power‐law fluids; Viscous incompressible fluids; Fluid dynamics; Mathematical modelling
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.
All for just $49/month
Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly
Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.
Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.
Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
DeepDyve Freelancer | DeepDyve Pro | |
---|---|---|
Price | FREE | $49/month |
Save searches from | ||
Create folders to | ||
Export folders, citations | ||
Read DeepDyve articles | Abstract access only | Unlimited access to over |
20 pages / month | ||
PDF Discount | 20% off | |
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.
ok to continue