Access the full text.
Sign up today, get DeepDyve free for 14 days.
The purpose of this study is to detect and reconstruct a fault in pitot probe and static ports, which are components of the air data system in commercial aircrafts, without false alarm and no need for pitot-static measurements. In this way, flight crew will be prevented from flying according to incorrect data and aircraft accidents that may occur will be prevented.Design/methodology/approachReal flight data collected from a local airline was used to design the relevant system. Correlation analysis was performed to select the data related to the airspeed and altitude. Fault detection and reconstruction were carried out by using adaptive neural fuzzy inference system and artificial neural networks, which are machine learning methods. MATLAB software was used for all the calculations.FindingsNo false alarm was detected when the fault test following the fault modeling was carried out at 0–2 s range by filtering the residual signal. When the fault was detected, fault reconstruction process was initiated so that system output could be achieved according to estimated sensor data.Practical implicationsThe presented alternative analytical redundant airspeed and altitude calculation scheme could be used when the pitot-static system contains any fault condition.Originality/valueInstead of using the methods based on hardware redundancy, the authors designed a new system within the scope of this study. Fault situations that may occur in pitot probes and static ports are modeled and different fault scenarios that can be encountered in all flight phases have been examined.
Aircraft Engineering and Aerospace Technology – Emerald Publishing
Published: Aug 12, 2021
Keywords: Aircraft sensor; Fault detection; Reconstruction; Machine learning
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.