Aeroelastic analysis of turbomachinery Part II – stability computations

Aeroelastic analysis of turbomachinery Part II – stability computations Part II of the two‐part paper describes an aeroelastic analysis program and its application for stability computations of turbomachinery blade rows. Unsteady Euler or Navier‐Stokes equations are solved on dynamically deforming, body fitted, and grid to obtain the aeroelastic characteristics. Blade structural response is modeled using a modal representation of the blade and the work‐per‐cycle method is used to evaluate the stability characteristics. Non‐zero inter‐blade phase angle is modeled using phase‐lagged boundary conditions. Results are presented for a flat plate helical fan, a turbine cascade and a high‐speed fan, to highlight the aeroelastic analysis method, and its capability and accuracy. Obtained results showed good correlation with existing experimental, analytical and numerical results. Numerical analysis also showed that given the computational resources available currently, engineering solutions with good accuracy are possible using higher fidelity analyses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Numerical Methods for Heat & Fluid Flow Emerald Publishing

Aeroelastic analysis of turbomachinery Part II – stability computations

Loading next page...
 
/lp/emerald-publishing/aeroelastic-analysis-of-turbomachinery-part-ii-stability-computations-1pEwOXNDar
Publisher
Emerald Publishing
Copyright
Copyright © 2004 Emerald Group Publishing Limited. All rights reserved.
ISSN
0961-5539
DOI
10.1108/09615530410518011
Publisher site
See Article on Publisher Site

Abstract

Part II of the two‐part paper describes an aeroelastic analysis program and its application for stability computations of turbomachinery blade rows. Unsteady Euler or Navier‐Stokes equations are solved on dynamically deforming, body fitted, and grid to obtain the aeroelastic characteristics. Blade structural response is modeled using a modal representation of the blade and the work‐per‐cycle method is used to evaluate the stability characteristics. Non‐zero inter‐blade phase angle is modeled using phase‐lagged boundary conditions. Results are presented for a flat plate helical fan, a turbine cascade and a high‐speed fan, to highlight the aeroelastic analysis method, and its capability and accuracy. Obtained results showed good correlation with existing experimental, analytical and numerical results. Numerical analysis also showed that given the computational resources available currently, engineering solutions with good accuracy are possible using higher fidelity analyses.

Journal

International Journal of Numerical Methods for Heat & Fluid FlowEmerald Publishing

Published: Apr 1, 2004

Keywords: Fourier analysis; Time series analysis; Multiple time series; Aircraft engines

References

  • Aeroelastic analysis of turbomachinery. Part I – phase lagged boundary condition methods
    Srivastava, R.; Bakhle, M.A.; Keith, T.G. Jr; Stefko, G.L.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off