Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
IN most aerodynamical problems it is convenient to consider the aircraft to be stationary and the air to be flowing with a speed equal to the flight speed in a direction opposite to the direction of the flight. This practice simplifies the investigation of the motion of the aircraft and is perfectly legitimate from the mathematical point of view. Thus, if the flight speed is v, the kinetic energy or the dynamic head, q, of unit mass of air is v2. It the air is allowed to flow through a restriction, for example, a radiator or an air intake duct, the velocity of flow is reduced, and the dynamic energy thus lost is converted into the pressure energy. In most problems it is sufficiently accurate to assume that air is an incompressible fluid so that the density remains constant, and the flow changes can be investigated by applying the wellknown Bernoulli's Equation, viz., pv2constant. This assumption is not strictly true, as the flow changes are usually brought about very quickly and there is little chance for the heat generated to be dissipated. However, the error made by this simplified assumption is not very large if the flight speed is fairly low. But in the case of highspeed aircraft, e.g. a fighter aircraft, the above assumption involves a considerable error. To make a due allowance for the suddenness of the change, it would be necessary to discard the notion of the incompressibility of air and to use the adiabatic law between the pressure and the density of air. Thus, a better and a truer picture of the actual state of affairs would be obtained by assuming the air to be compressible and to investigate its effect on the pressure, density, and the temperature of the air. It is proposed to make a theoretical investigation of this problem on these lines and to present the results in the form of tables, graphs, and nomograms which could be easily applied in the solution of any practical problem on the flow changes.
Aircraft Engineering and Aerospace Technology – Emerald Publishing
Published: Nov 1, 1945
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.