Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Additive manufacturing of interlaced fibrous structures

Additive manufacturing of interlaced fibrous structures The purpose of this research is to design 3D print and analyze mechanical as well as microstructural behavior of interlaced fibrous structures using Dremel 3D45 additive manufacturing (AM) machine.Design/methodology/approachA series of plain and twill weave fabrics are designed using computer-aided design software Solidworks and printed using fused deposition modeling machines to determine the best model that could be printable. The structures were designed in such a way that the fabricated yarns with pure (PLA) were not sticking to each other in the fabric structure. The specimens were printed in vertical orientation and then tensile and three-point bending (flexural) tests were conducted for twill weave fabrics.FindingsThe tests showed that the mechanical strength was higher in the warp direction than in the weft direction. This difference was because of printing of continuous filament-like yarns in the warp direction and staple-like yarns in the weft direction. This orthotropic property of the material was verified by analyzing its microscopic structures via optical microscope.Research limitations/implicationsFuture work should include improvement of the structure and exploration of different polymers and their composites to increase the tensile, bending and other strengths to make the 3D-printed structures more flexible and stronger. Future research should also focus on the large-scale manufacturing of 3D printed fabrics.Practical implicationsThis paper supports work on wearable 3D-printed fabrics. The 3D-printed fabric will also contribute to new applications and products such as liquid filters.Originality/valueThe research done in this work is new and original. This paper contributes to new knowledge by providing a better understanding of polymers and their 3D printing capabilities to form a complex fabric structure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Rapid Prototyping Journal Emerald Publishing

Additive manufacturing of interlaced fibrous structures

Rapid Prototyping Journal , Volume 27 (4): 11 – Jun 4, 2021

Loading next page...
 
/lp/emerald-publishing/additive-manufacturing-of-interlaced-fibrous-structures-ZvGPQ3hmew

References (49)

Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
1355-2546
DOI
10.1108/rpj-05-2020-0095
Publisher site
See Article on Publisher Site

Abstract

The purpose of this research is to design 3D print and analyze mechanical as well as microstructural behavior of interlaced fibrous structures using Dremel 3D45 additive manufacturing (AM) machine.Design/methodology/approachA series of plain and twill weave fabrics are designed using computer-aided design software Solidworks and printed using fused deposition modeling machines to determine the best model that could be printable. The structures were designed in such a way that the fabricated yarns with pure (PLA) were not sticking to each other in the fabric structure. The specimens were printed in vertical orientation and then tensile and three-point bending (flexural) tests were conducted for twill weave fabrics.FindingsThe tests showed that the mechanical strength was higher in the warp direction than in the weft direction. This difference was because of printing of continuous filament-like yarns in the warp direction and staple-like yarns in the weft direction. This orthotropic property of the material was verified by analyzing its microscopic structures via optical microscope.Research limitations/implicationsFuture work should include improvement of the structure and exploration of different polymers and their composites to increase the tensile, bending and other strengths to make the 3D-printed structures more flexible and stronger. Future research should also focus on the large-scale manufacturing of 3D printed fabrics.Practical implicationsThis paper supports work on wearable 3D-printed fabrics. The 3D-printed fabric will also contribute to new applications and products such as liquid filters.Originality/valueThe research done in this work is new and original. This paper contributes to new knowledge by providing a better understanding of polymers and their 3D printing capabilities to form a complex fabric structure.

Journal

Rapid Prototyping JournalEmerald Publishing

Published: Jun 4, 2021

Keywords: Additive manufacturing (AM); Fused deposition modeling (FDM); Polylactic acid (PLA); Yarns; Fabrics; Textiles

There are no references for this article.