Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Adaptive meshing algorithm for recognition of material cracks

Adaptive meshing algorithm for recognition of material cracks Describes the algorithm allowing recognition of cracks and flaws placed on the surface of conducting plate. The algorithm is based on sensitivity analysis in finite elements, which determines the influence of geometrical parameters on some local quantities, used as objective function. The methods are similar to that of circuit analysis, based on differentiation of stiffness matrix. The algorithm works iteratively using gradient method. The information on the gradient of the goal function provides the sensitivity analysis. The sensitivity algorithm allows us to calculate the sensitivity versus x and y, so the nodes can be properly displaced, modeling complicated shapes of defects. The examples show that sensitivity analysis applied for recognition of cracks and flaws provides very good results, even for complicated shape of the flaw. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/adaptive-meshing-algorithm-for-recognition-of-material-cracks-pXjg7bHtfp
Publisher
Emerald Publishing
Copyright
Copyright © 2004 Emerald Group Publishing Limited. All rights reserved.
ISSN
0332-1649
DOI
10.1108/03321640410540593
Publisher site
See Article on Publisher Site

Abstract

Describes the algorithm allowing recognition of cracks and flaws placed on the surface of conducting plate. The algorithm is based on sensitivity analysis in finite elements, which determines the influence of geometrical parameters on some local quantities, used as objective function. The methods are similar to that of circuit analysis, based on differentiation of stiffness matrix. The algorithm works iteratively using gradient method. The information on the gradient of the goal function provides the sensitivity analysis. The sensitivity algorithm allows us to calculate the sensitivity versus x and y, so the nodes can be properly displaced, modeling complicated shapes of defects. The examples show that sensitivity analysis applied for recognition of cracks and flaws provides very good results, even for complicated shape of the flaw.

Journal

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic EngineeringEmerald Publishing

Published: Sep 1, 2004

Keywords: Sensitivity analysis; Mesh generation; Optimization techniques

References