A study on individual mobility patterns based on individuals’ familiarity to visited areas

A study on individual mobility patterns based on individuals’ familiarity to visited areas PurposeThe purpose of this paper is to clarify the correlations between amount of individual’s knowledge of a specific area and his/her visit pattern to point of interest (POI, interested places) located in the area.Design/methodology/approachThis paper proposes a visit-frequency-based familiarity estimation method that estimates individuals’ knowledge of areas in a quantitative manner. Based on the familiarity degree, individuals’ visit logs to POIs are divided into a set of groups followed by analyzing the differences among the groups from various points of view, such as user preference, POI categories/popularity, visit time/date and subsequent visits.FindingsExistence of statistically significant correlations between individuals’ familiarity to areas and their visit patterns is observed by our analysis using 1.4-million POI visit logs collected from a popular location-based social network (LBSN), Foursquare. There exist different skewness of the visit time and visited POI distribution/popularity with regard to the familiarity. For instance, users go to unfamiliar areas on weekends and visit POIs for cultural experiences, such as museums. A notable point is that the correlations can be detected even in the areas in home city, which have not been known so far.Originality/valueThis is the first in-depth work that studies both estimation of individuals’ familiarity and correlations between the familiarity and individuals’ mobility patterns by analyzing massive LBSN data. The methodologies used and the findings of this work can be applicable not only to human mobility analysis for sociology, but also to POI recommendation system design. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Pervasive Computing and Communications Emerald Publishing

A study on individual mobility patterns based on individuals’ familiarity to visited areas

Loading next page...
 
/lp/emerald-publishing/a-study-on-individual-mobility-patterns-based-on-individuals-6vNqeTofYP
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1742-7371
DOI
10.1108/IJPCC-01-2016-0010
Publisher site
See Article on Publisher Site

Abstract

PurposeThe purpose of this paper is to clarify the correlations between amount of individual’s knowledge of a specific area and his/her visit pattern to point of interest (POI, interested places) located in the area.Design/methodology/approachThis paper proposes a visit-frequency-based familiarity estimation method that estimates individuals’ knowledge of areas in a quantitative manner. Based on the familiarity degree, individuals’ visit logs to POIs are divided into a set of groups followed by analyzing the differences among the groups from various points of view, such as user preference, POI categories/popularity, visit time/date and subsequent visits.FindingsExistence of statistically significant correlations between individuals’ familiarity to areas and their visit patterns is observed by our analysis using 1.4-million POI visit logs collected from a popular location-based social network (LBSN), Foursquare. There exist different skewness of the visit time and visited POI distribution/popularity with regard to the familiarity. For instance, users go to unfamiliar areas on weekends and visit POIs for cultural experiences, such as museums. A notable point is that the correlations can be detected even in the areas in home city, which have not been known so far.Originality/valueThis is the first in-depth work that studies both estimation of individuals’ familiarity and correlations between the familiarity and individuals’ mobility patterns by analyzing massive LBSN data. The methodologies used and the findings of this work can be applicable not only to human mobility analysis for sociology, but also to POI recommendation system design.

Journal

International Journal of Pervasive Computing and CommunicationsEmerald Publishing

Published: Apr 4, 2016

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off