A predictive analytics of physicians prescription and pharmacies sales correlation using data mining

A predictive analytics of physicians prescription and pharmacies sales correlation using data mining PurposeIn the pharmaceutical industry, marketing and sales managers often deal with massive amounts of marketing and sales data. One of their biggest concerns is to recognize the impact of actions taken on sold-out products. Data mining discovers and extracts useful patterns from such large data sets to find hidden and worthy patterns for the decision-making. This paper, too, aims to demonstrate the ability of data-mining process in improving the decision-making quality in the pharmaceutical industry.Design/methodology/approachThis research is descriptive in terms of the method applied, as well as the investigation of the existing situation and the use of real data and their description. In fact, the study is quantitative and descriptive, from the point of view of its data type and method. This research is also applicable in terms of purpose. The target population of this research is the data of a pharmaceutical company in Iran. Here, the cross-industry standard process for data mining methodology was used for data mining and data modeling.FindingsWith the help of different data-mining techniques, the authors could examine the effect of the visit of doctors overlooking the pharmacies and the target was set for medical representatives on the pharmaceutical sales. For that matter, the authors used two types of classification rules: decision tree and neural network. After the modeling of algorithms, it was determined that the two aforementioned rules can perform the classification with high precision. The results of the tree ID3 were analyzed to identify the variables and path of this relationship.Originality/valueTo the best of the authors’ knowledge, this is one of the first studies to provide the real-world direct empirical evidence of “Analytics of Physicians Prescription and Pharmacies Sales Correlation Using Data Mining.” The results showed that the most influential variables of “the relationship between doctors and their visits to pharmacies,” “the length of customer relationship” and “the relationship between the sale of pharmacies and the target set for medical representatives” were “deviation from the implementation plan.” Therefore, marketing and sales managers must pay special attention to these factors while planning and targeting for representatives. The authors could focus only on a small part of this study. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Pharmaceutical and Healthcare Marketing Emerald Publishing

A predictive analytics of physicians prescription and pharmacies sales correlation using data mining

Loading next page...
 
/lp/emerald-publishing/a-predictive-analytics-of-physicians-prescription-and-pharmacies-sales-QzMnioPzGr
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1750-6123
DOI
10.1108/IJPHM-11-2017-0066
Publisher site
See Article on Publisher Site

Abstract

PurposeIn the pharmaceutical industry, marketing and sales managers often deal with massive amounts of marketing and sales data. One of their biggest concerns is to recognize the impact of actions taken on sold-out products. Data mining discovers and extracts useful patterns from such large data sets to find hidden and worthy patterns for the decision-making. This paper, too, aims to demonstrate the ability of data-mining process in improving the decision-making quality in the pharmaceutical industry.Design/methodology/approachThis research is descriptive in terms of the method applied, as well as the investigation of the existing situation and the use of real data and their description. In fact, the study is quantitative and descriptive, from the point of view of its data type and method. This research is also applicable in terms of purpose. The target population of this research is the data of a pharmaceutical company in Iran. Here, the cross-industry standard process for data mining methodology was used for data mining and data modeling.FindingsWith the help of different data-mining techniques, the authors could examine the effect of the visit of doctors overlooking the pharmacies and the target was set for medical representatives on the pharmaceutical sales. For that matter, the authors used two types of classification rules: decision tree and neural network. After the modeling of algorithms, it was determined that the two aforementioned rules can perform the classification with high precision. The results of the tree ID3 were analyzed to identify the variables and path of this relationship.Originality/valueTo the best of the authors’ knowledge, this is one of the first studies to provide the real-world direct empirical evidence of “Analytics of Physicians Prescription and Pharmacies Sales Correlation Using Data Mining.” The results showed that the most influential variables of “the relationship between doctors and their visits to pharmacies,” “the length of customer relationship” and “the relationship between the sale of pharmacies and the target set for medical representatives” were “deviation from the implementation plan.” Therefore, marketing and sales managers must pay special attention to these factors while planning and targeting for representatives. The authors could focus only on a small part of this study.

Journal

International Journal of Pharmaceutical and Healthcare MarketingEmerald Publishing

Published: Sep 2, 2019

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off