A parallel algorithm for optimizing the capital structure contingent on maximum value at risk

A parallel algorithm for optimizing the capital structure contingent on maximum value at risk Purpose – The purpose of this paper is to measure the financial risk and optimal capital structure of a corporation. Design/methodology/approach – Irregular disjunctive programming problems arising in firm models and risk management can be solved by the techniques presented in the paper. Findings – Parallel processing and mathematical modeling provide a fruitful basis for solving ultra-scale non-convex general disjunctive programming (GDP) problems, where the computational challenge in direct mixed-integer non-linear programming (MINLP) formulations or single processor algorithms would be insurmountable. Research limitations/implications – The test is limited to a single firm in an experimental setting. Repeating the test on large sample of firms in future research will indicate the general validity of Monte-Carlo-based VAR estimation. Practical implications – The authors show that the risk surface of the firm can be approximated by integrated use of accounting logic, corporate finance, mathematical programming, stochastic simulation and parallel processing. Originality/value – Parallel processing has potential to simplify large-scale MINLP and GDP problems with non-convex, multi-modal and discontinuous parameter generating functions and to solve them faster and more reliably than conventional approaches on single processors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Kybernetes Emerald Publishing

A parallel algorithm for optimizing the capital structure contingent on maximum value at risk

Kybernetes, Volume 44 (3): 22 – Mar 2, 2015

Loading next page...
 
/lp/emerald-publishing/a-parallel-algorithm-for-optimizing-the-capital-structure-contingent-0i0eblDi0S
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0368-492X
DOI
10.1108/K-08-2014-0171
Publisher site
See Article on Publisher Site

Abstract

Purpose – The purpose of this paper is to measure the financial risk and optimal capital structure of a corporation. Design/methodology/approach – Irregular disjunctive programming problems arising in firm models and risk management can be solved by the techniques presented in the paper. Findings – Parallel processing and mathematical modeling provide a fruitful basis for solving ultra-scale non-convex general disjunctive programming (GDP) problems, where the computational challenge in direct mixed-integer non-linear programming (MINLP) formulations or single processor algorithms would be insurmountable. Research limitations/implications – The test is limited to a single firm in an experimental setting. Repeating the test on large sample of firms in future research will indicate the general validity of Monte-Carlo-based VAR estimation. Practical implications – The authors show that the risk surface of the firm can be approximated by integrated use of accounting logic, corporate finance, mathematical programming, stochastic simulation and parallel processing. Originality/value – Parallel processing has potential to simplify large-scale MINLP and GDP problems with non-convex, multi-modal and discontinuous parameter generating functions and to solve them faster and more reliably than conventional approaches on single processors.

Journal

KybernetesEmerald Publishing

Published: Mar 2, 2015

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off