Access the full text.
Sign up today, get DeepDyve free for 14 days.
The purpose of this paper is to present a novel retractable main landing gear for a light amphibious airplane, while the design, synthesis and analysis are given in details for constructing the main landing gear.Design/methodology/approachThe constraint three-position synthesis has given the correct path of all linkages that suitably fit the landing gear into the compartment. The additional lock-link is introduced into the design to ensure the securement of the mechanism while landing. Having the telescopic gas-oil shock strut as a core element to absorb the impact load, it enhances the ability and efficiency to withstand higher impact than others type of light amphibious airplane.FindingsBy kinematics bifurcation analysis, the optimized value of the unlock spring stiffness at 90 N/m can be found to tremendously reduce the extended-retracted linear actuator force from 500 N to 150 N at the beginning of the retraction sequence. This could limit the size and weight of the landing gear actuator of the light amphibious airplane.Practical implicationsThe drop test of the landing gear to comply with the ASTM f-2245 (Standard Specification for Design and Performance of a Light Sport Airplane) reveals that the novel landing gear can withstand the impact load at the drop height determined by the standard. The maximum impact loading 4.8 G occurs at the drop height of 300 mm, and there is no sign of any detrimental or failure of the landing gear or the structure of the light amphibious airplane. The impact settling time response reaches the 2% of steady-state value in approximately 1.2 s that ensure the safety and stability of the amphibious airplane if it subjects to an accidentally hard landing.Originality/valueThis paper presents unique applications of a retractable main landing gear of a light amphibious airplane. The proposed landing gear functions properly and complies with the drop test standard, ensuring the safety and reliability of the airplane and exploiting the airworthiness certification process.
Aircraft Engineering and Aerospace Technology – Emerald Publishing
Published: Nov 30, 2021
Keywords: Kinematics bifurcation analysis; Light amphibious airplane; Retractable landing gear
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.