Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

A novel hybrid control approach for modular automation system: a case study of sensorless interior permanent magnet in-wheel motor

A novel hybrid control approach for modular automation system: a case study of sensorless... PurposeSensorless interior permanent magnet in-wheel motor (IPMIWM), as an exemplar of modular automation system, has attracted considerable interests in recent years. This paper aims to investigate a novel hybrid control approach for the sensorless IPMIWM from a cyber-physical systems (CPS) perspective.Design/methodology/approachThe control approach is presented based on the hybrid dynamical theory. In the standstill-low (S-L) speed, the rotor position/speed signal is estimated by the method of the high frequency (HF) voltage signal injection. The least square support vector machine (LS-SVM) is used to acquire the rotor position/speed signal in medium-high (M-H) speed operation. Hybrid automata model of the IPMIWM is established due to its hybrid dynamic characteristics in wide speed range. A hybrid state observer (HSO), including a discrete state observer (DSO) and a continuous state observer (CSO), is designed for rotor position/speed estimation of the IPMIWM.FindingsThe hardware-in-the-loop testing based on dSPACE is carried out on the test bench. Experimental investigations demonstrate the hybrid control approach can not only identify the rotor position/speed signal with a certain load but also be able to reject the load disturbance. The reliability and the effectiveness of the proposed hybrid control approach were verified.Originality/valueThe proposed hybrid control approach for the sensorless IPMIWM promotes the deep combination and coordination of sensorless IPMIWM drive system. It also theoretically supports and extends the development of the hybrid control of the highly integrated modular automation system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Assembly Automation Emerald Publishing

A novel hybrid control approach for modular automation system: a case study of sensorless interior permanent magnet in-wheel motor

Assembly Automation , Volume 39 (5): 14 – Nov 4, 2019

Loading next page...
 
/lp/emerald-publishing/a-novel-hybrid-control-approach-for-modular-automation-system-a-case-z2kzlL6XmD
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0144-5154
DOI
10.1108/AA-08-2018-0120
Publisher site
See Article on Publisher Site

Abstract

PurposeSensorless interior permanent magnet in-wheel motor (IPMIWM), as an exemplar of modular automation system, has attracted considerable interests in recent years. This paper aims to investigate a novel hybrid control approach for the sensorless IPMIWM from a cyber-physical systems (CPS) perspective.Design/methodology/approachThe control approach is presented based on the hybrid dynamical theory. In the standstill-low (S-L) speed, the rotor position/speed signal is estimated by the method of the high frequency (HF) voltage signal injection. The least square support vector machine (LS-SVM) is used to acquire the rotor position/speed signal in medium-high (M-H) speed operation. Hybrid automata model of the IPMIWM is established due to its hybrid dynamic characteristics in wide speed range. A hybrid state observer (HSO), including a discrete state observer (DSO) and a continuous state observer (CSO), is designed for rotor position/speed estimation of the IPMIWM.FindingsThe hardware-in-the-loop testing based on dSPACE is carried out on the test bench. Experimental investigations demonstrate the hybrid control approach can not only identify the rotor position/speed signal with a certain load but also be able to reject the load disturbance. The reliability and the effectiveness of the proposed hybrid control approach were verified.Originality/valueThe proposed hybrid control approach for the sensorless IPMIWM promotes the deep combination and coordination of sensorless IPMIWM drive system. It also theoretically supports and extends the development of the hybrid control of the highly integrated modular automation system.

Journal

Assembly AutomationEmerald Publishing

Published: Nov 4, 2019

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month