Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A novel design of optimal intelligent fuzzy TID controller employing GA for nonlinear level control problem subject to actuator and system component fault

A novel design of optimal intelligent fuzzy TID controller employing GA for nonlinear level... The purpose of this article is about the design of controllers for conical two-tank noninteracting level (CTTNL) system in simulation. Local linearization around the equilibrium point has been done for the nonlinear CTTNL system to obtain a linearized model transfer function.Design/methodology/approachThis article deals with the design of novel optimal fractional-order tilt-integral-derivative (TID) controller using type-1 fuzzy set for the CTTNL prototype system. In this study, type-1 fuzzy TID controller parameters have been optimized through genetic algorithm (GA) and those set of values have been employed for the design of proportional-integral-derivative (PID) controller.FindingsA performance comparison between FTID and PID controller is then investigated. The analysis shows the superiority of FTID controller over PID controller in terms of integral absolute error (IAE), integral square error (ISE), integral of time multiplied absolute error (ITAE) and integral of time multiplied squared error (ITSE) integral errors. The transient and steady state performance of the FTID controller are superior as compared to conventional PID controller. In future, the FTID controller fault-tolerance capability tested on CTTNL system subject to actuator and system component (leak) faults. The detailed study of robustness in presence of model uncertainties will be incorporated as a scope of further research.Originality/valueA performance comparison between FTID and PID controller is then investigated. The analysis shows the superiority of FTID controller over PID controller in terms of IAE, ISE, ITAE and ITSE integral errors. Additionally, fault-tolerant performance of the proposed controller evaluated with fault-recovery time (Frt) parameter. The transient and steady state performance of the FTID controller are superior as compared to conventional PID controller. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Intelligent Computing and Cybernetics Emerald Publishing

A novel design of optimal intelligent fuzzy TID controller employing GA for nonlinear level control problem subject to actuator and system component fault

Loading next page...
 
/lp/emerald-publishing/a-novel-design-of-optimal-intelligent-fuzzy-tid-controller-employing-uTKjOC0LSC
Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
1756-378X
DOI
10.1108/ijicc-11-2020-0174
Publisher site
See Article on Publisher Site

Abstract

The purpose of this article is about the design of controllers for conical two-tank noninteracting level (CTTNL) system in simulation. Local linearization around the equilibrium point has been done for the nonlinear CTTNL system to obtain a linearized model transfer function.Design/methodology/approachThis article deals with the design of novel optimal fractional-order tilt-integral-derivative (TID) controller using type-1 fuzzy set for the CTTNL prototype system. In this study, type-1 fuzzy TID controller parameters have been optimized through genetic algorithm (GA) and those set of values have been employed for the design of proportional-integral-derivative (PID) controller.FindingsA performance comparison between FTID and PID controller is then investigated. The analysis shows the superiority of FTID controller over PID controller in terms of integral absolute error (IAE), integral square error (ISE), integral of time multiplied absolute error (ITAE) and integral of time multiplied squared error (ITSE) integral errors. The transient and steady state performance of the FTID controller are superior as compared to conventional PID controller. In future, the FTID controller fault-tolerance capability tested on CTTNL system subject to actuator and system component (leak) faults. The detailed study of robustness in presence of model uncertainties will be incorporated as a scope of further research.Originality/valueA performance comparison between FTID and PID controller is then investigated. The analysis shows the superiority of FTID controller over PID controller in terms of IAE, ISE, ITAE and ITSE integral errors. Additionally, fault-tolerant performance of the proposed controller evaluated with fault-recovery time (Frt) parameter. The transient and steady state performance of the FTID controller are superior as compared to conventional PID controller.

Journal

International Journal of Intelligent Computing and CyberneticsEmerald Publishing

Published: Mar 4, 2021

Keywords: Fuzzy logic; Genetic algorithms; Fault-tolerant control

References