Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper aims to design new finite difference schemes for the Lane–Emden type equations. In particular, the authors show that the schemes are stable with respect to the properties of the equation. The authors prove the uniqueness of the schemes and provide numerical simulations to support the findings.Design/methodology/approachThe Lane–Emden equation is a well-known highly nonlinear ordinary differential equation in mathematical physics. Exact solutions are known for a few parameter ranges and it is important that any approximation captures the properties of the equation it represent. For this reason, designing schemes requires a careful consideration of these properties. The authors apply the well-known nonstandard finite difference methods.FindingsSeveral interesting results are provided in this work. The authors list these as follows. Two new schemes are designed. Mathematical proofs are provided to show the existence and uniqueness of the solution of the discrete schemes. The authors show that the proposed method can be extended to singularly perturbed equations.Originality/valueThe value of this work can be measured as follows. It is the first time such schemes have been designed for the kind of equations.
Engineering Computations – Emerald Publishing
Published: Aug 15, 2019
Keywords: Nonstandard finite difference; Exact schemes; Lane–Emden equation
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.