Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A new hierarchical intrusion detection system based on a binary tree of classifiers

A new hierarchical intrusion detection system based on a binary tree of classifiers Purpose– The purpose of this paper is to build a new hierarchical intrusion detection system (IDS) based on a binary tree of different types of classifiers. The proposed IDS model must possess the following characteristics: combine a high detection rate and a low false alarm rate, and classify any connection in a specific category of network connection. Design/methodology/approach– To build the binary tree, the authors cluster the different categories of network connections hierarchically based on the proportion of false-positives and false-negatives generated between each of the two categories. The built model is a binary tree with multi-levels. At first, the authors use the best classifier in the classification of the network connections in category A and category G2 that clusters the rest of the categories. Then, in the second level, they use the best classifier in the classification of G2 network connections in category B and category G3 that represents the different categories clustered in G2 without category B. This process is repeated until the last two categories of network connections. Note that one of these categories represents the normal connection, and the rest represent the different types of abnormal connections. Findings– The experimentation on the labeled data set for flow-based intrusion detection, NSL-KDD and KDD’99 shows the high performance of the authors' model compared to the results obtained by some well-known classifiers and recent IDS models. The experiments’ results show that the authors' model gives a low false alarm rate and the highest detection rate. Moreover, the model is more accurate than some well-known classifiers like SVM, C4.5 decision tree, MLP neural network and naïve Bayes with accuracy equal to 83.26 per cent on NSL-KDD and equal to 99.92 per cent on the labeled data set for flow-based intrusion detection. As well, it is more accurate than the best of related works and recent IDS models with accuracy equal to 95.72 per cent on KDD’99. Originality/value– This paper proposes a novel hierarchical IDS based on a binary tree of classifiers, where different types of classifiers are used to create a high-performance model. Therefore, it confirms the capacity of the hierarchical model to combine a high detection rate and a low false alarm rate. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Information & Computer Security Emerald Publishing

A new hierarchical intrusion detection system based on a binary tree of classifiers

Loading next page...
 
/lp/emerald-publishing/a-new-hierarchical-intrusion-detection-system-based-on-a-binary-tree-QWlh8o49av
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
2056-4961
DOI
10.1108/ICS-04-2013-0031
Publisher site
See Article on Publisher Site

Abstract

Purpose– The purpose of this paper is to build a new hierarchical intrusion detection system (IDS) based on a binary tree of different types of classifiers. The proposed IDS model must possess the following characteristics: combine a high detection rate and a low false alarm rate, and classify any connection in a specific category of network connection. Design/methodology/approach– To build the binary tree, the authors cluster the different categories of network connections hierarchically based on the proportion of false-positives and false-negatives generated between each of the two categories. The built model is a binary tree with multi-levels. At first, the authors use the best classifier in the classification of the network connections in category A and category G2 that clusters the rest of the categories. Then, in the second level, they use the best classifier in the classification of G2 network connections in category B and category G3 that represents the different categories clustered in G2 without category B. This process is repeated until the last two categories of network connections. Note that one of these categories represents the normal connection, and the rest represent the different types of abnormal connections. Findings– The experimentation on the labeled data set for flow-based intrusion detection, NSL-KDD and KDD’99 shows the high performance of the authors' model compared to the results obtained by some well-known classifiers and recent IDS models. The experiments’ results show that the authors' model gives a low false alarm rate and the highest detection rate. Moreover, the model is more accurate than some well-known classifiers like SVM, C4.5 decision tree, MLP neural network and naïve Bayes with accuracy equal to 83.26 per cent on NSL-KDD and equal to 99.92 per cent on the labeled data set for flow-based intrusion detection. As well, it is more accurate than the best of related works and recent IDS models with accuracy equal to 95.72 per cent on KDD’99. Originality/value– This paper proposes a novel hierarchical IDS based on a binary tree of classifiers, where different types of classifiers are used to create a high-performance model. Therefore, it confirms the capacity of the hierarchical model to combine a high detection rate and a low false alarm rate.

Journal

Information & Computer SecurityEmerald Publishing

Published: Mar 9, 2015

There are no references for this article.