Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

A new articulated leg for mobile robots

A new articulated leg for mobile robots Purpose – The paper aims to present a new mechanical scheme for a leg to be included in legged vehicles that simplifies the control actuations along the stride. Design/methodology/approach – The scheme includes three four‐bar links grouped in two mechanisms. The first one decouples the vertical and horizontal foot movements. The second one produces a constant horizontal foot velocity when the corresponding motor is given a constant speed. A hybrid robot with wheels at the end of the hind legs has been simulated and constructed to validate the leg performance. Findings – The gait control requires only five commands for the electronic cards to control the leg. Decoupling vertical and horizontal movements allows a more adequate selection of actuators, a reduction of energy consumption, and higher load capacity and robot velocity. Additional mechanical benefits, such as improved robustness and lower inertia, are obtained. The hind legs can also be articulated, allowing the robot to overcome an obstacle and to climb up and down stairs. Research limitations/implications – A hybrid robot offers greater stability with respect to a legged robot. This way the lateral movement is not a concern, and therefore it has not been tested yet during the walking cycle. Originality/value – This new scheme obtains a quasi‐Cartesian behaviour for the foot movement that drastically simplifies the control of the walking cycle. Although the decoupling between movements has already been obtained in previous configurations, these follow a pantograph structure and suffer from blocking problems when they are subject to lateral forces. These schemes were suitable for crab‐like gaits. The proposed leg moves according to a mammal‐like gait. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Industrial Robot: An International Journal Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/a-new-articulated-leg-for-mobile-robots-VCGdc91fub
Publisher
Emerald Publishing
Copyright
Copyright © 2011 Emerald Group Publishing Limited. All rights reserved.
ISSN
0143-991X
DOI
10.1108/01439911111154090
Publisher site
See Article on Publisher Site

Abstract

Purpose – The paper aims to present a new mechanical scheme for a leg to be included in legged vehicles that simplifies the control actuations along the stride. Design/methodology/approach – The scheme includes three four‐bar links grouped in two mechanisms. The first one decouples the vertical and horizontal foot movements. The second one produces a constant horizontal foot velocity when the corresponding motor is given a constant speed. A hybrid robot with wheels at the end of the hind legs has been simulated and constructed to validate the leg performance. Findings – The gait control requires only five commands for the electronic cards to control the leg. Decoupling vertical and horizontal movements allows a more adequate selection of actuators, a reduction of energy consumption, and higher load capacity and robot velocity. Additional mechanical benefits, such as improved robustness and lower inertia, are obtained. The hind legs can also be articulated, allowing the robot to overcome an obstacle and to climb up and down stairs. Research limitations/implications – A hybrid robot offers greater stability with respect to a legged robot. This way the lateral movement is not a concern, and therefore it has not been tested yet during the walking cycle. Originality/value – This new scheme obtains a quasi‐Cartesian behaviour for the foot movement that drastically simplifies the control of the walking cycle. Although the decoupling between movements has already been obtained in previous configurations, these follow a pantograph structure and suffer from blocking problems when they are subject to lateral forces. These schemes were suitable for crab‐like gaits. The proposed leg moves according to a mammal‐like gait.

Journal

Industrial Robot: An International JournalEmerald Publishing

Published: Aug 23, 2011

Keywords: Robots; Kinematics; Mobile robots; Legged robots; Kinematic analysis; Synthesis

References