Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

A low power miniaturized monitoring system of six human physiological parameters based on wearable body sensor network

A low power miniaturized monitoring system of six human physiological parameters based on... Purpose – The purpose of this paper is to design a low-power human physiological parameters monitoring system which can monitor six vital parameters simultaneously based on wearable body sensor network. Design/methodology/approach – This paper presents a low-power multiple physiological parameters monitoring system (MPMS) which comprises four subsystems. These are: electrocardiogram (ECG)/respiration (RESP) parameters monitoring subsystem with embedded algorithms; blood oxygen (SpO 2 )/pulse rate (PR)/body temperature (BT)/blood pressure (BP) parameters monitoring subsystem with embedded algorithms; main control subsystem which is in charge of system-level power management, communication and interaction design; and upper computer software subsystem which manipulates system function and analyzes data. Findings – Results have successfully demonstrated monitoring human ECG, RESP, PR, SpO 2 , BP and BT simultaneously using the MPMS device. In addition, the power reduction technique developed in this work at the physical/hardware level is effective. Reliability of algorithms developed for monitoring these parameters is assessed by Fluke Prosim8 Vital Signs Simulators (produced by Fluke Corp. USA). Practical implications – The MPMS device provides long-term health monitoring without interference from normal personal activities, which potentially allows applications in real-time daily healthcare monitoring, chronic diseases monitoring, elderly monitoring, human emotions recognization and so on. Originality/value – First, a power reduction technique at the physical/hardware level is designed to realize low power consumption. Second, the proposed MPMS device enables simultaneously monitoring six key parameters. Third, unlike most monitoring systems in bulk size, the proposed system is much smaller (118 × 58 × 18.5 mm3, 140 g total weight). In addition, a comfortable smart shirt is fabricated to accommodate the portable device, offering reliable measurements. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Sensor Review Emerald Publishing

A low power miniaturized monitoring system of six human physiological parameters based on wearable body sensor network

Loading next page...
 
/lp/emerald-publishing/a-low-power-miniaturized-monitoring-system-of-six-human-physiological-BfTjClbkUT
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0260-2288
DOI
10.1108/SR-08-2014-687
Publisher site
See Article on Publisher Site

Abstract

Purpose – The purpose of this paper is to design a low-power human physiological parameters monitoring system which can monitor six vital parameters simultaneously based on wearable body sensor network. Design/methodology/approach – This paper presents a low-power multiple physiological parameters monitoring system (MPMS) which comprises four subsystems. These are: electrocardiogram (ECG)/respiration (RESP) parameters monitoring subsystem with embedded algorithms; blood oxygen (SpO 2 )/pulse rate (PR)/body temperature (BT)/blood pressure (BP) parameters monitoring subsystem with embedded algorithms; main control subsystem which is in charge of system-level power management, communication and interaction design; and upper computer software subsystem which manipulates system function and analyzes data. Findings – Results have successfully demonstrated monitoring human ECG, RESP, PR, SpO 2 , BP and BT simultaneously using the MPMS device. In addition, the power reduction technique developed in this work at the physical/hardware level is effective. Reliability of algorithms developed for monitoring these parameters is assessed by Fluke Prosim8 Vital Signs Simulators (produced by Fluke Corp. USA). Practical implications – The MPMS device provides long-term health monitoring without interference from normal personal activities, which potentially allows applications in real-time daily healthcare monitoring, chronic diseases monitoring, elderly monitoring, human emotions recognization and so on. Originality/value – First, a power reduction technique at the physical/hardware level is designed to realize low power consumption. Second, the proposed MPMS device enables simultaneously monitoring six key parameters. Third, unlike most monitoring systems in bulk size, the proposed system is much smaller (118 × 58 × 18.5 mm3, 140 g total weight). In addition, a comfortable smart shirt is fabricated to accommodate the portable device, offering reliable measurements.

Journal

Sensor ReviewEmerald Publishing

Published: Mar 16, 2015

There are no references for this article.