A linear programming decision tool for selecting the optimum excavator

A linear programming decision tool for selecting the optimum excavator Previous methods have been developed to predict tracked hydraulic excavator output and associated costs of production, but these fail to provide a “complete” solution to the plant productivity problem. That is, when hiring or purchasing machines plant managers are not normally provided with sufficient detail to optimise the plant selection decision process. The crux of this problem is to choose an appropriate plant item from the vast range available. This paper contributes to resolving this selection process through the application of an optimisation technique, based on linear programming. Specifically, a decision tool for selecting the optimum excavator type for given production scenarios is presented. In achieving this aim, a mass excavation task was specified as the principal decision criterion. Production output and machine hire costs were predicted using both multivariate and bivariate regression models. The decision tool performed well during testing and therefore exhibits significant potential for use by practitioners. The paper concludes with direction for future research work; concentrating on development of a software package for accurately predicting productivity rates and assisting in the plant selection process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Structural Survey Emerald Publishing

A linear programming decision tool for selecting the optimum excavator

Loading next page...
 
/lp/emerald-publishing/a-linear-programming-decision-tool-for-selecting-the-optimum-excavator-00yPRh1Kk6
Publisher
Emerald Publishing
Copyright
Copyright © 2001 MCB UP Ltd. All rights reserved.
ISSN
0263-080X
DOI
10.1108/EUM0000000005628
Publisher site
See Article on Publisher Site

Abstract

Previous methods have been developed to predict tracked hydraulic excavator output and associated costs of production, but these fail to provide a “complete” solution to the plant productivity problem. That is, when hiring or purchasing machines plant managers are not normally provided with sufficient detail to optimise the plant selection decision process. The crux of this problem is to choose an appropriate plant item from the vast range available. This paper contributes to resolving this selection process through the application of an optimisation technique, based on linear programming. Specifically, a decision tool for selecting the optimum excavator type for given production scenarios is presented. In achieving this aim, a mass excavation task was specified as the principal decision criterion. Production output and machine hire costs were predicted using both multivariate and bivariate regression models. The decision tool performed well during testing and therefore exhibits significant potential for use by practitioners. The paper concludes with direction for future research work; concentrating on development of a software package for accurately predicting productivity rates and assisting in the plant selection process.

Journal

Structural SurveyEmerald Publishing

Published: May 1, 2001

Keywords: Construction industry; Plant and machinery; Productivity; Linear programming; Decision making

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off