Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
This study aims to suggest and develops a global sensitivity analysis-assisted multi-level sequential optimization method for the heat transfer problem.Design/methodology/approachCompared with other surrogate-assisted optimization methods, the distinctive characteristic of the suggested method is to decompose the original problem into several layers according to the global sensitivity index. The optimization starts with the several most important design variables by the support vector regression-based efficient global optimization method. Then, when the optimization process progresses, the filtered design variables should be involved in optimization one by one or the setting value. Therefore, in each layer, the design space should be reduced according to the previous optimization result. To improve the accuracy of the global sensitivity index, a novel global sensitivity analysis method based on the variance-based method incorporating a random sampling high-dimensional model representation is introduced.FindingsThe advantage of this method lies in its capability to solve complicated problems with a limited number of sample points. Moreover, to enhance the reliability of optimum, the support vector regression-based global efficient optimization is used to optimize in each layer.Practical implicationsThe developed optimization tool is built by MATLAB and can be integrated by commercial software, such as ABAQUS and COMSOL. Lastly, this tool is integrated with COMSOL and applied to the plant-fin heat sink design. Compared with the initial temperature, the temperature after design is over 49°. Moreover, the relationships among all design variables are also disclosed clearly.Originality/valueThe D-MORPH-HDMR is integrated to obtain the coupling relativities among the design variables efficiently. The suggested method can be decomposed into multiplier layers according to the GSI. The SVR-EGO is used to optimize the sub-problem because of its robustness of modeling.
Engineering Computations – Emerald Publishing
Published: Jul 31, 2019
Keywords: Global sensitivity analysis; High-dimensional model representation; Plate fin heat sink design; Sequential optimization
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.