Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A general finite volume based numerical algorithm for hydrocarbon reservoir simulation using blackoil model

A general finite volume based numerical algorithm for hydrocarbon reservoir simulation using... Purpose – The purpose of this paper is to present a detailed algorithm for simulating three-dimensional hydrocarbon reservoirs using the blackoil model. Design/methodology/approach – The numerical algorithm uses a cell-centred structured grid finite volume method. The blackoil formulation is written in a way that an Implicit Pressure Explicit Saturation approach can be used. The flow field is obtained by solving a general gas pressure equation derived by manipulating the governing equations. All possible variations of the pressure equation coefficients are given for different reservoir conditions. Key computational details including treatment of non-linear terms, expansion of accumulation terms, transitions from under-saturated to saturated states and vice versa, high gas injection rates, evolution of gas in the oil production wells and adaptive time-stepping procedures are elaborated. Findings – It was shown that using a proper linearization method, less computational difficulties occur especially when free gas is released with high rates. The computational performance of the proposed algorithm is assessed by solving the first SPE comparative study problem with both constant and variable bubble point conditions. Research limitations/implications – While discretization is performed and implemented for unstructured grids, the numerical results are presented only for structured grids, as expected, the accuracy of numerical results are best for structured grids. Also, the reservoir is assumed to be non-fractured. Practical implications – The proposed algorithm can be efficiently used for simulating a wide range of practical problems wherever blackoil model is applicable. Originality/value – A complete and detailed description of ingredients of an efficient finite volume-based algorithm for simulating blackoil flows in hydrocarbon reservoirs is presented. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Numerical Methods for Heat & Fluid Flow Emerald Publishing

A general finite volume based numerical algorithm for hydrocarbon reservoir simulation using blackoil model

Loading next page...
 
/lp/emerald-publishing/a-general-finite-volume-based-numerical-algorithm-for-hydrocarbon-4giW6yoAeM
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0961-5539
DOI
10.1108/HFF-10-2013-0302
Publisher site
See Article on Publisher Site

Abstract

Purpose – The purpose of this paper is to present a detailed algorithm for simulating three-dimensional hydrocarbon reservoirs using the blackoil model. Design/methodology/approach – The numerical algorithm uses a cell-centred structured grid finite volume method. The blackoil formulation is written in a way that an Implicit Pressure Explicit Saturation approach can be used. The flow field is obtained by solving a general gas pressure equation derived by manipulating the governing equations. All possible variations of the pressure equation coefficients are given for different reservoir conditions. Key computational details including treatment of non-linear terms, expansion of accumulation terms, transitions from under-saturated to saturated states and vice versa, high gas injection rates, evolution of gas in the oil production wells and adaptive time-stepping procedures are elaborated. Findings – It was shown that using a proper linearization method, less computational difficulties occur especially when free gas is released with high rates. The computational performance of the proposed algorithm is assessed by solving the first SPE comparative study problem with both constant and variable bubble point conditions. Research limitations/implications – While discretization is performed and implemented for unstructured grids, the numerical results are presented only for structured grids, as expected, the accuracy of numerical results are best for structured grids. Also, the reservoir is assumed to be non-fractured. Practical implications – The proposed algorithm can be efficiently used for simulating a wide range of practical problems wherever blackoil model is applicable. Originality/value – A complete and detailed description of ingredients of an efficient finite volume-based algorithm for simulating blackoil flows in hydrocarbon reservoirs is presented.

Journal

International Journal of Numerical Methods for Heat & Fluid FlowEmerald Publishing

Published: Oct 28, 2014

There are no references for this article.