Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

A fractional approach to wicking fluid flow in nonwoven porous fabric

A fractional approach to wicking fluid flow in nonwoven porous fabric Purpose – The purpose of this paper is to employ a fractional approach to predict the permeability of nonwoven fabrics by simulating diffusion process. Design/methodology/approach – The method described here follows a similar approach to anomalous diffusion process. The relationship between viscous hydraulic permeability and electrical conductivity of porous material is applied in the derivation of fractional power law of permeability. Findings – The presented power law predicted by fractional method is validated by the results obtained from simulation of fluid flow around a 3D nonwoven porous material by using the lattice-Boltzmann approach. A relation between the fluid permeability and the fluid content (filling fraction), namely, following the power law of the form, was derived via a scaling argument. The exponent n is predominantly a function of pore-size distribution dimension and random walk dimension of the fluid. Originality/value – The fractional scheme by simulating diffusion process presented in this paper is a new method to predict wicking fluid flow through nonwoven fabrics. The forecast approach can be applied to the prediction of the permeability of other porous materials. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Numerical Methods for Heat & Fluid Flow Emerald Publishing

A fractional approach to wicking fluid flow in nonwoven porous fabric

Loading next page...
 
/lp/emerald-publishing/a-fractional-approach-to-wicking-fluid-flow-in-nonwoven-porous-fabric-nWQ20F6Qhq
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0961-5539
DOI
10.1108/HFF-04-2013-0124
Publisher site
See Article on Publisher Site

Abstract

Purpose – The purpose of this paper is to employ a fractional approach to predict the permeability of nonwoven fabrics by simulating diffusion process. Design/methodology/approach – The method described here follows a similar approach to anomalous diffusion process. The relationship between viscous hydraulic permeability and electrical conductivity of porous material is applied in the derivation of fractional power law of permeability. Findings – The presented power law predicted by fractional method is validated by the results obtained from simulation of fluid flow around a 3D nonwoven porous material by using the lattice-Boltzmann approach. A relation between the fluid permeability and the fluid content (filling fraction), namely, following the power law of the form, was derived via a scaling argument. The exponent n is predominantly a function of pore-size distribution dimension and random walk dimension of the fluid. Originality/value – The fractional scheme by simulating diffusion process presented in this paper is a new method to predict wicking fluid flow through nonwoven fabrics. The forecast approach can be applied to the prediction of the permeability of other porous materials.

Journal

International Journal of Numerical Methods for Heat & Fluid FlowEmerald Publishing

Published: Jan 5, 2015

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month