Access the full text.
Sign up today, get DeepDyve free for 14 days.
Purpose – The aim of this study is to develop an applicable and detailed model for customer lifetime value (CLV) and to highlight the most important indicators relevant for a specific industry – namely the banking sector. Design/methodology/approach – This study compares the results of the least square estimation (LSE) and artificial neural network (ANN) in order to select the best performing forecasting tool to predict the potential CLV. The performances of the models are compared by the hit ratio, which is calculated by grouping the customers as “top 20 per cent” and “bottom 80 per cent” profitable. Findings – Due to its higher performance; LSE based linear regression model is selected. The results are found to be highly competitive compared with the previous studies. This study shows that, beside the indicators mostly used in the literature in measuring CLV, two additional groups, namely monetary value and risk of certain bank services, as well as product/service ownership‐related indicators, are also significant factors. Practical implications – Organisations in the banking sector have to persuade their customers to use certain routine risk‐bearing transaction‐based services. In addition, the product development strategy has a crucial role to increase the CLV of customers because some of the product‐related variables directly increase the value of customers. Originality/value – The proposed model predicts potential value of current customers rather than measuring current value considered in the majority of previous studies. It eliminates the limitations and drawbacks of the majority of models in the literature through simple and industry‐specific method which is based on easily measurable and objective indicators.
European Journal of Marketing – Emerald Publishing
Published: Apr 8, 2014
Keywords: Artificial neural network; Least squares estimation; Customer lifetime value; Linear regression; Marketing decision
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.