Access the full text.
Sign up today, get DeepDyve free for 14 days.
The structural acoustic problem, wherein an acoustic domain is confined within a partly flexible laminated composite enclosure is presented. From the finite element free vibration analysis of the laminated folded plate structure a mobility relation is derived between the normal velocity of the structure and normal pressure on the structure. A boundary element solver for the Helmholtz equation with quadratic isoparametric elements is developed using pressure‐velocity formulation. Velocity is known over certain parts of the boundary, the rest being the interactive boundary, where the mobility relation correlates nodal pressures and velocities, neither explicitly known. The pressure boundary values are solved from the boundary element and the mobility relations, while the nodal particle velocities and domain pressures are computed at desired points thereafter. New results presented here reveal the effects of the variation in magnitude of structural damping, fiber angles and the thickness of walls.
Aircraft Engineering and Aerospace Technology – Emerald Publishing
Published: Aug 1, 2000
Keywords: Finite element method; Boundary element method; Composites; Acoustics
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.