Access the full text.
Sign up today, get DeepDyve free for 14 days.
Purpose – The purpose of this paper is to present the benefits of using the Lagrangian relaxation (LR) and subgradient methods in scenario studies for wavelength division multiplexing (WDM) network planning. The problem of WDM network planning for a given set of lightpath demands in a mesh topology network is to select lightpath routes and then allocate wavelength channels to the lightpaths. In WDM network planning, a scenario study is to find out the network performance under different lightpath demands and/or different network resource configurations. Design/methodology/approach – A scenario study must solve a series of related static WDM network planning problems. Each static WDM network planning problem is an optimization problem, and may be formulated as an integer linear programming problem, which can be solved by the proposed Lagrangian relaxation and subgradient methods. This paper uses the Lagrange multipliers that are obtained from previous scenarios as initial Lagrange multiplier values for other related scenarios. Findings – This approach dramatically reduces the computation time for related scenarios. For small to medium variations of scenarios, the method reduces the computation time by several folds. The proposed method is the first method that effectively considers the relations between related scenarios, and uses such relations to improve the computation efficiency of scenario studies in WDM network planning. Practical implications – The method improves the efficiency of a scenario study in WDM network planning. By using it, many “what‐if” type of scenario study questions can be answered quickly. Originality/value – Unlike other existing methods that treat each scenario individually, this method effectively uses the information of the relation between different scenarios to improve the overall computation efficiency.
COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering – Emerald Publishing
Published: Nov 13, 2009
Keywords: Wavelengths; Network analysis; Resource allocation; Communication technologies; Telecommunication network routing
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.