Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A boosting-based transfer learning method to address absolute-rarity in skin lesion datasets and prevent weight-drift for melanoma detection

A boosting-based transfer learning method to address absolute-rarity in skin lesion datasets and... Automated skin lesion analysis plays a vital role in early detection. Having relatively small-sized imbalanced skin lesion datasets impedes learning and dominates research in automated skin lesion analysis. The unavailability of adequate data poses difficulty in developing classification methods due to the skewed class distribution.Design/methodology/approachBoosting-based transfer learning (TL) paradigms like Transfer AdaBoost algorithm can compensate for such a lack of samples by taking advantage of auxiliary data. However, in such methods, beneficial source instances representing the target have a fast and stochastic weight convergence, which results in “weight-drift” that negates transfer. In this paper, a framework is designed utilizing the “Rare-Transfer” (RT), a boosting-based TL algorithm, that prevents “weight-drift” and simultaneously addresses absolute-rarity in skin lesion datasets. RT prevents the weights of source samples from quick convergence. It addresses absolute-rarity using an instance transfer approach incorporating the best-fit set of auxiliary examples, which improves balanced error minimization. It compensates for class unbalance and scarcity of training samples in absolute-rarity simultaneously for inducing balanced error optimization.FindingsPromising results are obtained utilizing the RT compared with state-of-the-art techniques on absolute-rare skin lesion datasets with an accuracy of 92.5%. Wilcoxon signed-rank test examines significant differences amid the proposed RT algorithm and conventional algorithms used in the experiment.Originality/valueExperimentation is performed on absolute-rare four skin lesion datasets, and the effectiveness of RT is assessed based on accuracy, sensitivity, specificity and area under curve. The performance is compared with an existing ensemble and boosting-based TL methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Data Technologies and Applications Emerald Publishing

A boosting-based transfer learning method to address absolute-rarity in skin lesion datasets and prevent weight-drift for melanoma detection

Loading next page...
 
/lp/emerald-publishing/a-boosting-based-transfer-learning-method-to-address-absolute-rarity-2i3tW7YPnq

References (40)

Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
2514-9288
DOI
10.1108/dta-10-2021-0296
Publisher site
See Article on Publisher Site

Abstract

Automated skin lesion analysis plays a vital role in early detection. Having relatively small-sized imbalanced skin lesion datasets impedes learning and dominates research in automated skin lesion analysis. The unavailability of adequate data poses difficulty in developing classification methods due to the skewed class distribution.Design/methodology/approachBoosting-based transfer learning (TL) paradigms like Transfer AdaBoost algorithm can compensate for such a lack of samples by taking advantage of auxiliary data. However, in such methods, beneficial source instances representing the target have a fast and stochastic weight convergence, which results in “weight-drift” that negates transfer. In this paper, a framework is designed utilizing the “Rare-Transfer” (RT), a boosting-based TL algorithm, that prevents “weight-drift” and simultaneously addresses absolute-rarity in skin lesion datasets. RT prevents the weights of source samples from quick convergence. It addresses absolute-rarity using an instance transfer approach incorporating the best-fit set of auxiliary examples, which improves balanced error minimization. It compensates for class unbalance and scarcity of training samples in absolute-rarity simultaneously for inducing balanced error optimization.FindingsPromising results are obtained utilizing the RT compared with state-of-the-art techniques on absolute-rare skin lesion datasets with an accuracy of 92.5%. Wilcoxon signed-rank test examines significant differences amid the proposed RT algorithm and conventional algorithms used in the experiment.Originality/valueExperimentation is performed on absolute-rare four skin lesion datasets, and the effectiveness of RT is assessed based on accuracy, sensitivity, specificity and area under curve. The performance is compared with an existing ensemble and boosting-based TL methods.

Journal

Data Technologies and ApplicationsEmerald Publishing

Published: Mar 17, 2023

Keywords: Skin lesion; Weight-drift; Rare-Transfer; Absolute-rarity; Weight convergence; Source; Target

There are no references for this article.