Zn2+ induced molecular responses associated with oxidative stress, DNA damage and histopathological lesions in liver and kidney of the fish, Channa punctatus (Bloch, 1793)

Zn2+ induced molecular responses associated with oxidative stress, DNA damage and... Zn2+ is essential for normal physiological functioning of all organisms in small quantities, but when its concentration enhances in surrounding environment it acts as a toxicant to organisms. Common sources of Zn2+ pollution are electroplating, alloying, mining, and allied industrial operations. The present study aims to assess the biochemical, histopathological and genotoxicological implications under Zn2+ intoxication along with its accumulation patterns in prime biotransformation sites-liver and kidney, of a bottom feeder fish, Channa punctatus. Fish were chronically exposed to two different concentrations of Zn2+ i.e., 5mg/L (permissible limit, T1) and 10mg/L (twice the permissible limit, T2). Simultaneous control was maintained. A significant (p<0.05) increment in Zn2+ bioaccumulation, antioxidant enzymes activities of SOD, CAT and GR and induction in micronuclei frequencies along with the significant (p<0.05) decrement in total protein and GSH were observed in all the exposed groups after 28 d. Altered biochemical parameters coupled with enhanced induction in micronuclei and accumulation of Zn2+ in liver and kidney of fish can be regarded as sensitive biomarkers of Zn2+ induced toxicological manifestations and thus, they may be effectively utilized for reliable ecotoxicological biomonitoring of aquatic regimes polluted with Zn2+. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecotoxicology and Environmental Safety Elsevier

Zn2+ induced molecular responses associated with oxidative stress, DNA damage and histopathological lesions in liver and kidney of the fish, Channa punctatus (Bloch, 1793)

Loading next page...
 
/lp/elsevier/zn2-induced-molecular-responses-associated-with-oxidative-stress-dna-NxbGNc06pm
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Inc.
ISSN
0147-6513
eISSN
1090-2414
D.O.I.
10.1016/j.ecoenv.2017.12.058
Publisher site
See Article on Publisher Site

Abstract

Zn2+ is essential for normal physiological functioning of all organisms in small quantities, but when its concentration enhances in surrounding environment it acts as a toxicant to organisms. Common sources of Zn2+ pollution are electroplating, alloying, mining, and allied industrial operations. The present study aims to assess the biochemical, histopathological and genotoxicological implications under Zn2+ intoxication along with its accumulation patterns in prime biotransformation sites-liver and kidney, of a bottom feeder fish, Channa punctatus. Fish were chronically exposed to two different concentrations of Zn2+ i.e., 5mg/L (permissible limit, T1) and 10mg/L (twice the permissible limit, T2). Simultaneous control was maintained. A significant (p<0.05) increment in Zn2+ bioaccumulation, antioxidant enzymes activities of SOD, CAT and GR and induction in micronuclei frequencies along with the significant (p<0.05) decrement in total protein and GSH were observed in all the exposed groups after 28 d. Altered biochemical parameters coupled with enhanced induction in micronuclei and accumulation of Zn2+ in liver and kidney of fish can be regarded as sensitive biomarkers of Zn2+ induced toxicological manifestations and thus, they may be effectively utilized for reliable ecotoxicological biomonitoring of aquatic regimes polluted with Zn2+.

Journal

Ecotoxicology and Environmental SafetyElsevier

Published: Apr 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off