yVDAC2, the second mitochondrial porin isoform of Saccharomyces cerevisiae

yVDAC2, the second mitochondrial porin isoform of Saccharomyces cerevisiae The yeast Saccharomyces cerevisiae genome is endowed with two distinct isoforms of Voltage-Dependent Anion Channel (VDAC). The isoform yVDAC2 is currently understudied with respect to the best known yVDAC1. Yet, since the discovery, the function of yVDAC2 was unclear, leading to the hypothesis that it might be devoid of a channel function. In this work we have elucidated, by bioinformatics modeling and electrophysiological analysis, the functional activity of yVDAC2. The conformation of yVDAC2 and, for comparison, of yVDAC1 were modeled using a multiple template approach involving mouse, human and zebrafish structures and both showed to arrange the sequences as the typical 19-stranded VDAC β-barrel. Molecular dynamics simulations showed that yVDAC2, in comparison with yVDAC1, has a different number of permeation paths of potassium and chloride ions. yVDAC2 protein was over-expressed in the S. cerevisiae cells depleted of functional yVDAC1 (Δpor1 mutant) and, after purification, it was reconstituted in artificial membranes (planar lipid bilayer (PLB) system). The protein displayed channel-forming activity and the calculated conductance, voltage-dependence and ion selectivity values were similar to those of yVDAC1 and other members of VDAC family. This is the first time that yVDAC2 channel features are detected and characterized. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochimica et Biophysica Acta (BBA) - Bioenergetics Elsevier

Loading next page...
 
/lp/elsevier/yvdac2-the-second-mitochondrial-porin-isoform-of-saccharomyces-4CLcbsMyU0
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0005-2728
D.O.I.
10.1016/j.bbabio.2018.01.008
Publisher site
See Article on Publisher Site

Abstract

The yeast Saccharomyces cerevisiae genome is endowed with two distinct isoforms of Voltage-Dependent Anion Channel (VDAC). The isoform yVDAC2 is currently understudied with respect to the best known yVDAC1. Yet, since the discovery, the function of yVDAC2 was unclear, leading to the hypothesis that it might be devoid of a channel function. In this work we have elucidated, by bioinformatics modeling and electrophysiological analysis, the functional activity of yVDAC2. The conformation of yVDAC2 and, for comparison, of yVDAC1 were modeled using a multiple template approach involving mouse, human and zebrafish structures and both showed to arrange the sequences as the typical 19-stranded VDAC β-barrel. Molecular dynamics simulations showed that yVDAC2, in comparison with yVDAC1, has a different number of permeation paths of potassium and chloride ions. yVDAC2 protein was over-expressed in the S. cerevisiae cells depleted of functional yVDAC1 (Δpor1 mutant) and, after purification, it was reconstituted in artificial membranes (planar lipid bilayer (PLB) system). The protein displayed channel-forming activity and the calculated conductance, voltage-dependence and ion selectivity values were similar to those of yVDAC1 and other members of VDAC family. This is the first time that yVDAC2 channel features are detected and characterized.

Journal

Biochimica et Biophysica Acta (BBA) - BioenergeticsElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off