XANES spectroscopy as a tool to trace phosphorus transformation during soil genesis and mountain ecosystem development from lake sediments

XANES spectroscopy as a tool to trace phosphorus transformation during soil genesis and mountain... The aim of this study is to investigate phosphorus (P) species modifications triggered by soil genesis and mountain ecosystem development after glacial retreat using a lake sediment archive (Lake Anterne, North French Alps). Five lake sediment samples, representative of different stages of soil and ecosystem development, were selected for P speciation analyses. Furthermore, a sequence of current soils from the catchment was analyzed to better constrain our interpretations of the lacustrine archive. Synchrotron techniques (X-ray Fluorescence (XRF) mapping and P K-edge X-ray absorption near edge structure (XANES) spectroscopy) were applied to lake sediments, soils, and standards (mineral and organic) to distinguish between different P species. The results show that soil development during the first millennia of the Holocene triggered increased P species diversity. At the onset of the Holocene, P was present as apatite when rocks and leptosols dominated the catchment. Pedogenic processes then led to apatite dissolution and the formation of large amounts of P on metal/clay-organic complexes. P geochemistry during the main step of soil genesis (early leptosols dominated by apatite, low weathered cambisols with P mainly adsorbed on iron oxides, highly weathered podzols with large amounts of P on Al/Fe/clay organic complexes) is thus clearly recorded in lake sediments. P K-edge XANES spectroscopy is particularly relevant as qualitative method to study P species in soils and lake sediments at high spatial resolution. Such resolution is needed to reveal the diversity of small P particles and like this better characterize the P cycle and improve our understanding of ecosystem evolution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geochimica et Cosmochimica Acta Elsevier

XANES spectroscopy as a tool to trace phosphorus transformation during soil genesis and mountain ecosystem development from lake sediments

Loading next page...
 
/lp/elsevier/xanes-spectroscopy-as-a-tool-to-trace-phosphorus-transformation-during-uYPoC1X63o
Publisher
Elsevier
Copyright
Copyright © 2013 Elsevier Ltd
ISSN
0016-7037
eISSN
1872-9533
D.O.I.
10.1016/j.gca.2013.04.017
Publisher site
See Article on Publisher Site

Abstract

The aim of this study is to investigate phosphorus (P) species modifications triggered by soil genesis and mountain ecosystem development after glacial retreat using a lake sediment archive (Lake Anterne, North French Alps). Five lake sediment samples, representative of different stages of soil and ecosystem development, were selected for P speciation analyses. Furthermore, a sequence of current soils from the catchment was analyzed to better constrain our interpretations of the lacustrine archive. Synchrotron techniques (X-ray Fluorescence (XRF) mapping and P K-edge X-ray absorption near edge structure (XANES) spectroscopy) were applied to lake sediments, soils, and standards (mineral and organic) to distinguish between different P species. The results show that soil development during the first millennia of the Holocene triggered increased P species diversity. At the onset of the Holocene, P was present as apatite when rocks and leptosols dominated the catchment. Pedogenic processes then led to apatite dissolution and the formation of large amounts of P on metal/clay-organic complexes. P geochemistry during the main step of soil genesis (early leptosols dominated by apatite, low weathered cambisols with P mainly adsorbed on iron oxides, highly weathered podzols with large amounts of P on Al/Fe/clay organic complexes) is thus clearly recorded in lake sediments. P K-edge XANES spectroscopy is particularly relevant as qualitative method to study P species in soils and lake sediments at high spatial resolution. Such resolution is needed to reveal the diversity of small P particles and like this better characterize the P cycle and improve our understanding of ecosystem evolution.

Journal

Geochimica et Cosmochimica ActaElsevier

Published: Oct 1, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off