Wound healing-related properties detected in an experimental model with a collagen gel contraction assay are affected in the absence of tenascin-X

Wound healing-related properties detected in an experimental model with a collagen gel... Patients with tenascin-X (TNX)-deficient type Ehlers-Danlos syndrome (EDS) do not exhibit delayed wound healing, unlike classic type EDS patients, who exhibit mutations in collagen genes. Similarly, in TNX-knockout (KO) mice, wound closure of the skin is normal even though these mice exhibit a reduced breaking strength. Therefore, we speculated that the wound healing process may be affected in the absence of TNX. In this study, to investigate the effects of TNX absence on wound healing-related properties, we performed collagen gel contraction assays with wild-type (WT) and TNX-KO mouse embryonic fibroblasts (MEFs). Collagen gels with embedded TNX-KO MEFs showed significantly greater contraction than those containing WT MEFs. Subsequently, we assessed collagen gel contraction-related properties, such as the activities of matrix metalloproteinase (MMP)-2 and MMP-9 and the protein and mRNA expression levels of transforming growth factor β1 (TGF-β1) in the collagen gels. The activities of MMP-2 and MMP-9 and the expression level of TGF-β1 were elevated in the absence of TNX. Furthermore, filopodia-like protrusion formation, cell proliferation, migration, and collagen expression in MEFs were promoted in the absence of TNX. These results indicate that these wound healing-related properties are affected in a TNX-deficient extracellular environment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experimental Cell Research Elsevier

Wound healing-related properties detected in an experimental model with a collagen gel contraction assay are affected in the absence of tenascin-X

Loading next page...
 
/lp/elsevier/wound-healing-related-properties-detected-in-an-experimental-model-p2ju30E99T
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Inc.
ISSN
0014-4827
D.O.I.
10.1016/j.yexcr.2017.12.025
Publisher site
See Article on Publisher Site

Abstract

Patients with tenascin-X (TNX)-deficient type Ehlers-Danlos syndrome (EDS) do not exhibit delayed wound healing, unlike classic type EDS patients, who exhibit mutations in collagen genes. Similarly, in TNX-knockout (KO) mice, wound closure of the skin is normal even though these mice exhibit a reduced breaking strength. Therefore, we speculated that the wound healing process may be affected in the absence of TNX. In this study, to investigate the effects of TNX absence on wound healing-related properties, we performed collagen gel contraction assays with wild-type (WT) and TNX-KO mouse embryonic fibroblasts (MEFs). Collagen gels with embedded TNX-KO MEFs showed significantly greater contraction than those containing WT MEFs. Subsequently, we assessed collagen gel contraction-related properties, such as the activities of matrix metalloproteinase (MMP)-2 and MMP-9 and the protein and mRNA expression levels of transforming growth factor β1 (TGF-β1) in the collagen gels. The activities of MMP-2 and MMP-9 and the expression level of TGF-β1 were elevated in the absence of TNX. Furthermore, filopodia-like protrusion formation, cell proliferation, migration, and collagen expression in MEFs were promoted in the absence of TNX. These results indicate that these wound healing-related properties are affected in a TNX-deficient extracellular environment.

Journal

Experimental Cell ResearchElsevier

Published: Feb 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off