Wnt signaling in osteoblasts and bone diseases

Wnt signaling in osteoblasts and bone diseases Recent revelations that the canonical Wnt signaling pathway promotes postnatal bone accrual are major advances in our understanding of skeletal biology and bring tremendous promise for new therapeutic treatments for osteoporosis and other diseases of altered bone mass. Wnts are soluble glycoproteins that engage receptor complexes composed of Lrp5/6 and Frizzled proteins. A subgroup of Wnts induces a cascade of intracellular events that stabilize β-catenin, facilitating its transport to nuclei where it binds Lef1/Tcf transcription factors and alters gene expression to promote osteoblast expansion and function. Natural extracellular Wnt antagonists, Dickkopfs and secreted frizzled-related proteins, impair osteoblast function and block bone formation. In several genetic disorders of altered skeletal mass, mutations in LRP5 create gain-of-function or loss-of-function receptors that are resistant to normal regulatory mechanisms and cause higher or lower bone density, respectively. In this review, we summarize the available molecular, cellular, and genetic data that demonstrate how Lrp5 and other components of the Wnt signaling pathway influence osteoblast proliferation, function, and survival. We also discuss regulatory mechanisms discovered in developmental and tumor models that may provide insights into novel therapies for bone diseases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Gene Elsevier

Wnt signaling in osteoblasts and bone diseases

Loading next page...
 
/lp/elsevier/wnt-signaling-in-osteoblasts-and-bone-diseases-xPc2yOKn15
Publisher
Elsevier
Copyright
Copyright © 2004 Elsevier B.V.
ISSN
0378-1119
eISSN
1879-0038
D.O.I.
10.1016/j.gene.2004.06.044
Publisher site
See Article on Publisher Site

Abstract

Recent revelations that the canonical Wnt signaling pathway promotes postnatal bone accrual are major advances in our understanding of skeletal biology and bring tremendous promise for new therapeutic treatments for osteoporosis and other diseases of altered bone mass. Wnts are soluble glycoproteins that engage receptor complexes composed of Lrp5/6 and Frizzled proteins. A subgroup of Wnts induces a cascade of intracellular events that stabilize β-catenin, facilitating its transport to nuclei where it binds Lef1/Tcf transcription factors and alters gene expression to promote osteoblast expansion and function. Natural extracellular Wnt antagonists, Dickkopfs and secreted frizzled-related proteins, impair osteoblast function and block bone formation. In several genetic disorders of altered skeletal mass, mutations in LRP5 create gain-of-function or loss-of-function receptors that are resistant to normal regulatory mechanisms and cause higher or lower bone density, respectively. In this review, we summarize the available molecular, cellular, and genetic data that demonstrate how Lrp5 and other components of the Wnt signaling pathway influence osteoblast proliferation, function, and survival. We also discuss regulatory mechanisms discovered in developmental and tumor models that may provide insights into novel therapies for bone diseases.

Journal

GeneElsevier

Published: Oct 27, 2004

References

  • Glycogen synthase kinase-3: properties, functions, and regulation
    Ali, A.; Hoeflich, K.P.; Woodgett, J.R.
  • High bone mass in mice expressing a mutant LRP5 gene
    Babij, P.; Zhao, W.; Small, C.; Kharode, Y.; Yaworsky, P.J.; Bouxsein, M.L.; Reddy, P.S.; Bodine, P.V.; Robinson, J.A.; Bhat, B.; Marzolf, J.; Moran, R.A.; Bex, F.
  • Estradiol inhibits GSK3 and regulates interaction of estrogen receptors, GSK3, and beta-catenin in the hippocampus
    Cardona-Gomez, P.; Perez, M.; Avila, J.; Garcia-Segura, L.M.; Wandosell, F.
  • Human osteoblasts express a repertoire of cadherins, which are critical for BMP-2-induced osteogenic differentiation
    Cheng, S.L.; Lecanda, F.; Davidson, M.K.; Warlow, P.M.; Zhang, S.F.; Zhang, L.; Suzuki, S.; St John, T.; Civitelli, R.
  • Molecular cloning and characterization of LR3, a novel LDL receptor family protein with mitogenic activity
    Dong, Y.; Lathrop, W.; Weaver, D.; Qiu, Q.; Cini, J.; Bertolini, D.; Chen, D.
  • Interaction among GSK-3, GBP, axin, and APC in Xenopus axis specification
    Farr, G.H.; Ferkey, D.M.; Yost, C.; Pierce, S.B.; Weaver, C.; Kimelman, D.
  • Caught up in a Wnt storm: Wnt signaling in cancer
    Giles, R.H.; van Es, J.H.; Clevers, H.
  • Human autosomal recessive osteopetrosis maps to 11q13, a position predicted by comparative mapping of the murine osteosclerosis (oc) mutation
    Heaney, C.; Shalev, H.; Elbedour, K.; Carmi, R.; Staack, J.B.; Sheffield, V.C.; Beier, D.R.
  • Cloning of a novel member of the low-density lipoprotein receptor family
    Hey, P.J.; Twells, R.C.; Phillips, M.S.; Yusuke, N.; Brown, S.D.; Kawaguchi, Y.; Cox, R.; Guochun, X.; Dugan, V.; Hammond, H.; Metzker, M.L.; Todd, J.A.; Hess, J.F.
  • Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor
    Kato, M.; Patel, M.S.; Levasseur, R.; Lobov, I.; Chang, B.H.; Glass, D.A.; Hartmann, C.; Li, L.; Hwang, T.H.; Brayton, C.F.; Lang, R.A.; Karsenty, G.; Chan, L.
  • Linkage of a QTL contributing to normal variation in bone mineral density to chromosome 11q12–13
    Koller, D.L.; Rodriguez, L.A.; Christian, J.C.; Slemenda, C.W.; Econs, M.J.; Hui, S.L.; Morin, P.; Conneally, P.M.; Joslyn, G.; Curran, M.E.; Peacock, M.; Johnston, C.C.; Foroud, T.
  • Functional and structural diversity of the human Dickkopf gene family
    Krupnik, V.E.; Sharp, J.D.; Jiang, C.; Robison, K.; Chickering, T.W.; Amaravadi, L.; Brown, D.E.; Guyot, D.; Mays, G.; Leiby, K.; Chang, B.; Duong, T.; Goodearl, A.D.; Gearing, D.P.; Sokol, S.Y.; McCarthy, S.A.
  • Axin and Frat1 interact with dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1
    Li, L.; Yuan, H.; Weaver, C.D.; Mao, J.; Farr, G.H.; Sussman, D.J.; Jonkers, J.; Kimelman, D.; Wu, D.
  • Sex steroids and bone
    Manolagas, S.C.; Kousteni, S.; Jilka, R.L.
  • Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling
    Mao, B.; Niehrs, C.
  • Multiple G-protein involvement in parathyroid hormone regulation of acid production by osteoclasts
    May, L.G.; Gay, C.V.
  • The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway
    Oishi, I.; Suzuki, H.; Onishi, N.; Takada, R.; Kani, S.; Ohkawara, B.; Koshida, I.; Suzuki, K.; Yamada, G.; Schwabe, G.C.; Mundlos, S.; Shibuya, H.; Takada, S.; Minami, Y.
  • Seven novel sequence variants in the human low density lipoprotein receptor related protein 5 ( LRP5 ) gene
    Okubo, M.; Horinishi, A.; Kim, D.H.; Yamamoto, T.T.; Murase, T.
  • Overexpression of Xgsk-3 disrupts anterior ectodermal patterning in Xenopus
    Pierce, S.B.; Kimelman, D.
  • BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop
    Rawadi, G.; Vayssiere, B.; Dunn, F.; Baron, R.; Roman-Roman, S.
  • Notch signaling activity
    Schweisguth, F.
  • A blockade in Wnt signaling is activated following the differentiation of F9 teratocarcinoma cells
    Shibamoto, S.; Winer, J.; Williams, M.; Polakis, P.
  • Wnt signaling in the thymus
    Staal, F.J.; Clevers, H.C.
  • Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells
    Stambolic, V.; Ruel, L.; Woodgett, J.R.
  • A mechanism for Wnt coreceptor activation
    Tamai, K.; Zeng, X.; Liu, C.; Zhang, X.; Harada, Y.; Chang, Z.; He, X.
  • Comprehensive microarray analysis of bone morphogenetic protein 2-induced osteoblast differentiation resulting in the identification of novel markers for bone development
    Vaes, B.L.; Dechering, K.J.; Feijen, A.; Hendriks, J.M.; Lefevre, C.; Mummery, C.L.; Olijve, W.; van Zoelen, E.J.; Steegenga, W.T.
  • Wnts, wing: Wnt signaling in vertebrate limb development and musculoskeletal morphogenesis
    Yang, Y.
  • A frizzled homolog functions in a vertebrate Wnt signaling pathway
    Yang-Snyder, J.; Miller, J.R.; Brown, J.D.; Lai, C.J.; Moon, R.T.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off