Whole-ecosystem labile carbon production in a north temperate deciduous forest

Whole-ecosystem labile carbon production in a north temperate deciduous forest Labile carbon (C), which is principally comprised of non-structural carbohydrates, is an essential intermediary between C assimilation and structural growth in deciduous forests. We developed a new approach that combined meteorological and biometric C cycling data for a mixed deciduous forest in Michigan, USA, to provide novel estimates of whole-ecosystem labile C production and reallocation to structural net primary production (NPP). We substantiated inferred seasonal patterns of labile C production and reallocation to structural NPP with measurements of Populus grandidentata and Quercus rubra wood non-structural carbohydrate concentration and mass over two years. Our analysis showed that 55% of annual net canopy C assimilate ( A c ) was first allocated to labile C production rather than to immediate structural NPP. Labile C produced during the latter half of summer later supported dormant-season structural growth and respiration, with 34% of structural NPP in a given year requiring labile C stored during previous years. Seasonal changes in wood non-structural carbohydrate concentration and mass generally corroborated inferred temporal patterns of whole-ecosystem labile C production and reallocation to structural NPP. Our findings confirm that disparities can arise between same-year meteorological and biometric net ecosystem production when meteorologically measured C assimilation and biometrically measured growth are asynchronous because of temporary photosynthate allocation to labile C storage. We conclude that a broader understanding of labile C production and reallocation at the ecosystem scale is important to interpreting lagged canopy C cycling and structural growth processes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Agricultural and Forest Meteorology Elsevier

Whole-ecosystem labile carbon production in a north temperate deciduous forest

Loading next page...
 
/lp/elsevier/whole-ecosystem-labile-carbon-production-in-a-north-temperate-093AXJQBva
Publisher
Elsevier
Copyright
Copyright © 2009 Elsevier B.V.
ISSN
0168-1923
D.O.I.
10.1016/j.agrformet.2009.04.006
Publisher site
See Article on Publisher Site

Abstract

Labile carbon (C), which is principally comprised of non-structural carbohydrates, is an essential intermediary between C assimilation and structural growth in deciduous forests. We developed a new approach that combined meteorological and biometric C cycling data for a mixed deciduous forest in Michigan, USA, to provide novel estimates of whole-ecosystem labile C production and reallocation to structural net primary production (NPP). We substantiated inferred seasonal patterns of labile C production and reallocation to structural NPP with measurements of Populus grandidentata and Quercus rubra wood non-structural carbohydrate concentration and mass over two years. Our analysis showed that 55% of annual net canopy C assimilate ( A c ) was first allocated to labile C production rather than to immediate structural NPP. Labile C produced during the latter half of summer later supported dormant-season structural growth and respiration, with 34% of structural NPP in a given year requiring labile C stored during previous years. Seasonal changes in wood non-structural carbohydrate concentration and mass generally corroborated inferred temporal patterns of whole-ecosystem labile C production and reallocation to structural NPP. Our findings confirm that disparities can arise between same-year meteorological and biometric net ecosystem production when meteorologically measured C assimilation and biometrically measured growth are asynchronous because of temporary photosynthate allocation to labile C storage. We conclude that a broader understanding of labile C production and reallocation at the ecosystem scale is important to interpreting lagged canopy C cycling and structural growth processes.

Journal

Agricultural and Forest MeteorologyElsevier

Published: Sep 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off