Where have all the MPRs gone? On the optimal selection of Multi-Point Relays

Where have all the MPRs gone? On the optimal selection of Multi-Point Relays Optimized Link State Routing (OLSR) is a widespread routing protocol in wireless mesh networks: static, mobile, ad-hoc, and even sensor networks. The selection of Multi-Point Relays (MPR) that form a signaling backbone is at the heart of the protocol and it is a crucial process to reduce the signaling overhead. Since the protocol proposal and specification, the original heuristic for MPRs selection has been largely studied showing it has good local properties; however, this does not give insight about the properties of the global set of MPRs. Here lays the contribution of this paper: First we define the problem of the minimization of the global MPR set (the union of all the MPR sets) as a centralized integer linear programming problem, which is NP-hard. We are able to solve it for networks of practical size, up to 150 nodes. Second, we define a bound that we call the “distributed optimum,” which we show to be a lower bound for distributed MPR selection algorithms, still requiring considerable power to be computed. Finally, we set-up an experimental performance evaluation methodology and we show that a heuristic that we recently proposed performs very close to the distributed optimum, and always outperforms the original heuristic. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ad Hoc Networks Elsevier

Where have all the MPRs gone? On the optimal selection of Multi-Point Relays

Loading next page...
 
/lp/elsevier/where-have-all-the-mprs-gone-on-the-optimal-selection-of-multi-point-mSHbIvfysk
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
1570-8705
D.O.I.
10.1016/j.adhoc.2018.04.012
Publisher site
See Article on Publisher Site

Abstract

Optimized Link State Routing (OLSR) is a widespread routing protocol in wireless mesh networks: static, mobile, ad-hoc, and even sensor networks. The selection of Multi-Point Relays (MPR) that form a signaling backbone is at the heart of the protocol and it is a crucial process to reduce the signaling overhead. Since the protocol proposal and specification, the original heuristic for MPRs selection has been largely studied showing it has good local properties; however, this does not give insight about the properties of the global set of MPRs. Here lays the contribution of this paper: First we define the problem of the minimization of the global MPR set (the union of all the MPR sets) as a centralized integer linear programming problem, which is NP-hard. We are able to solve it for networks of practical size, up to 150 nodes. Second, we define a bound that we call the “distributed optimum,” which we show to be a lower bound for distributed MPR selection algorithms, still requiring considerable power to be computed. Finally, we set-up an experimental performance evaluation methodology and we show that a heuristic that we recently proposed performs very close to the distributed optimum, and always outperforms the original heuristic.

Journal

Ad Hoc NetworksElsevier

Published: Aug 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off