When guests trust hosts for their words: Host description and trust in sharing economy

When guests trust hosts for their words: Host description and trust in sharing economy In order to better understand the dynamics of user behavior in the sharing economy platform, a multi-stage study was conducted on how Airbnb hosts articulate themselves online and how consumers respond to different host self-presentation patterns. First, using text mining techniques on a large dataset consisting descriptions of Airbnb hosts in 14 major cities in the United States, two patterns of host self-presentation were identified. Hosts generally present themselves online as (1) a well-traveled individual, eager to meet new people or (2) an individual of a certain profession. This contributes to the conceptualization of profile as promise framework for online self-presentation in mixed-mode interactions involving peer-to-peer accommodation platform. Second, consumers respond to the two host self-presentation strategies differently, demonstrating higher levels of perceived trustworthiness in and intention to book from well-traveled hosts. This has direct strategic implications for effective self-marketing of “amateur” tourism players as well as for the role of residents as resources in tourism destinations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tourism Management Elsevier

When guests trust hosts for their words: Host description and trust in sharing economy

Loading next page...
 
/lp/elsevier/when-guests-trust-hosts-for-their-words-host-description-and-trust-in-TTFgrTu0Rs
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0261-5177
D.O.I.
10.1016/j.tourman.2018.02.002
Publisher site
See Article on Publisher Site

Abstract

In order to better understand the dynamics of user behavior in the sharing economy platform, a multi-stage study was conducted on how Airbnb hosts articulate themselves online and how consumers respond to different host self-presentation patterns. First, using text mining techniques on a large dataset consisting descriptions of Airbnb hosts in 14 major cities in the United States, two patterns of host self-presentation were identified. Hosts generally present themselves online as (1) a well-traveled individual, eager to meet new people or (2) an individual of a certain profession. This contributes to the conceptualization of profile as promise framework for online self-presentation in mixed-mode interactions involving peer-to-peer accommodation platform. Second, consumers respond to the two host self-presentation strategies differently, demonstrating higher levels of perceived trustworthiness in and intention to book from well-traveled hosts. This has direct strategic implications for effective self-marketing of “amateur” tourism players as well as for the role of residents as resources in tourism destinations.

Journal

Tourism ManagementElsevier

Published: Aug 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off