Water-assisted compounding of cellulose nanocrystals into polyamide 6 for use as a nucleating agent for microcellular foaming

Water-assisted compounding of cellulose nanocrystals into polyamide 6 for use as a nucleating... Cellulose nanocrystals (CNCs) are a biorenewable filler and can be an excellent nucleating agent for the development of microcellular foamed polymeric nanocomposites. However, their relatively low degradation temperature limits their use with engineering resins like polyamide 6 (PA6) in typical melt processing techniques such as injection molding, compounding, and extrusion. A water-assisted extrusion compounding process was investigated to directly compound CNC suspensions with PA6 without the need of predrying the CNCs. By using water as a plasticizer and reducing the processing temperature by 30 °C, this process can mitigate the degradation of CNCs during compounding. The effects of the CNCs on the mechanical properties, crystal type, and microstructure of solid and microcellular foamed specimens were characterized. The CNCs primarily acted as a nucleating filler, affecting both the matrix crystal structure and, in foamed composites, the cell structure. The CNCs nucleated the α-crystalline form of PA6 and also acted as a foam cell nucleator, increasing cell density by an order of magnitude while significantly reducing cell size. The weight reduction of the foamed specimens was about 15%. Adding small amounts of CNCs also increased matrix orientation in the solid injection molded specimens. These factors helped to improve the mechanical performance, especially the modulus of elasticity. During water-assisted compounding, thermal hydrolysis of PA6 occurred and generated carbon–carbon double bonds, as evaluated by FTIR. However, the molecular weight reduction caused by hydrolysis was less than 5%. The total molecular weight reduction was around 18%, combined with the melt extrusion and injection molding processes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer Elsevier

Water-assisted compounding of cellulose nanocrystals into polyamide 6 for use as a nucleating agent for microcellular foaming

Loading next page...
 
/lp/elsevier/water-assisted-compounding-of-cellulose-nanocrystals-into-polyamide-6-gewG5alxEG
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0032-3861
D.O.I.
10.1016/j.polymer.2015.12.050
Publisher site
See Article on Publisher Site

Abstract

Cellulose nanocrystals (CNCs) are a biorenewable filler and can be an excellent nucleating agent for the development of microcellular foamed polymeric nanocomposites. However, their relatively low degradation temperature limits their use with engineering resins like polyamide 6 (PA6) in typical melt processing techniques such as injection molding, compounding, and extrusion. A water-assisted extrusion compounding process was investigated to directly compound CNC suspensions with PA6 without the need of predrying the CNCs. By using water as a plasticizer and reducing the processing temperature by 30 °C, this process can mitigate the degradation of CNCs during compounding. The effects of the CNCs on the mechanical properties, crystal type, and microstructure of solid and microcellular foamed specimens were characterized. The CNCs primarily acted as a nucleating filler, affecting both the matrix crystal structure and, in foamed composites, the cell structure. The CNCs nucleated the α-crystalline form of PA6 and also acted as a foam cell nucleator, increasing cell density by an order of magnitude while significantly reducing cell size. The weight reduction of the foamed specimens was about 15%. Adding small amounts of CNCs also increased matrix orientation in the solid injection molded specimens. These factors helped to improve the mechanical performance, especially the modulus of elasticity. During water-assisted compounding, thermal hydrolysis of PA6 occurred and generated carbon–carbon double bonds, as evaluated by FTIR. However, the molecular weight reduction caused by hydrolysis was less than 5%. The total molecular weight reduction was around 18%, combined with the melt extrusion and injection molding processes.

Journal

PolymerElsevier

Published: Feb 10, 2016

References

  • J. Appl. Polym. Sci.
    Peng, J.; Ellingham, T.; Sabo, R.; Clemons, C.M.; Turng, L.S.
  • Polym. Degrad. Stabil.
    Davis, R.D.; Gilman, J.W.; Vanderhart, D.L.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off