Warming modulates the effects of the endocrine disruptor progestin levonorgestrel on the zebrafish fitness, ovary maturation kinetics and reproduction success

Warming modulates the effects of the endocrine disruptor progestin levonorgestrel on the... Interactive effects between multiple stressors, namely climate drivers (e.g., temperature) and chemical pollution (e.g., endocrine disruptors) are poorly studied. Here, it was for the first time evaluated the combinatory effects of temperature and a synthetic progestin, levonorgestrel (LNG), on the fitness and reproductive-related endpoints of zebrafish (Danio rerio). A multi-factorial design was implemented by manipulating both temperature [setting as baseline an ambient temperature of 27 °C, against warming (+3 °C)] and LNG levels (10 ngL−1 and 1000 ngL−1). Groups of males and females were exposed sub-acutely, for 21-days. Increased temperature caused an overall decrease in the females’ gonadosomatic index (GSI), during the pre-reproduction phase, LNG did not affect GSI. In addition, fecundity (number of ovulated eggs) was negatively affected by both temperature and LNG, being the effect of the latter more intense. Fish exposed to the highest LNG concentration (at both temperatures) did not reproduce, but also in those exposed to the lowest dose of progestin at a higher temperature, a complete reproductive failure occurred. These results reflect what was observed in the stereological analysis of the ovary maturation stages prior to reproduction. Accordingly, the higher the LNG concentration, the lower the degree of maturation of the ovary. This was exacerbated by the higher temperature. As to embryonated eggs, they hatched significantly faster at higher temperatures, but exposure to 10 ngL−1 of LNG (at 27 °C) reduced significantly the hatching rate, comparing to control. Further, the recrudescence of the ovary 48 h after spawning seems to be not affected by both stressors. Our data suggest that in a future scenario of global warming and synthetic hormones exposure, the reproduction of fish species, such as the zebrafish, can be endangered, which can put at risk their success, and consequently affect the structure and functioning of associated aquatic ecosystems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Warming modulates the effects of the endocrine disruptor progestin levonorgestrel on the zebrafish fitness, ovary maturation kinetics and reproduction success

Loading next page...
 
/lp/elsevier/warming-modulates-the-effects-of-the-endocrine-disruptor-progestin-z5rTuvozZU
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.05.090
Publisher site
See Article on Publisher Site

Abstract

Interactive effects between multiple stressors, namely climate drivers (e.g., temperature) and chemical pollution (e.g., endocrine disruptors) are poorly studied. Here, it was for the first time evaluated the combinatory effects of temperature and a synthetic progestin, levonorgestrel (LNG), on the fitness and reproductive-related endpoints of zebrafish (Danio rerio). A multi-factorial design was implemented by manipulating both temperature [setting as baseline an ambient temperature of 27 °C, against warming (+3 °C)] and LNG levels (10 ngL−1 and 1000 ngL−1). Groups of males and females were exposed sub-acutely, for 21-days. Increased temperature caused an overall decrease in the females’ gonadosomatic index (GSI), during the pre-reproduction phase, LNG did not affect GSI. In addition, fecundity (number of ovulated eggs) was negatively affected by both temperature and LNG, being the effect of the latter more intense. Fish exposed to the highest LNG concentration (at both temperatures) did not reproduce, but also in those exposed to the lowest dose of progestin at a higher temperature, a complete reproductive failure occurred. These results reflect what was observed in the stereological analysis of the ovary maturation stages prior to reproduction. Accordingly, the higher the LNG concentration, the lower the degree of maturation of the ovary. This was exacerbated by the higher temperature. As to embryonated eggs, they hatched significantly faster at higher temperatures, but exposure to 10 ngL−1 of LNG (at 27 °C) reduced significantly the hatching rate, comparing to control. Further, the recrudescence of the ovary 48 h after spawning seems to be not affected by both stressors. Our data suggest that in a future scenario of global warming and synthetic hormones exposure, the reproduction of fish species, such as the zebrafish, can be endangered, which can put at risk their success, and consequently affect the structure and functioning of associated aquatic ecosystems.

Journal

Environmental PollutionElsevier

Published: Oct 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off