Warm nights in the Argentine Pampas: Modelling its impact on wheat and barley shows yield reductions

Warm nights in the Argentine Pampas: Modelling its impact on wheat and barley shows yield reductions Efforts to anticipate how climate change and variability will affect future crop production can benefit from understanding the impacts of current and historic changes. This study aimed to quantify and compare the impact of increased night temperature on potential yield and phenology of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) crops modelled using APSIM with historical climate series (1961–2014) in sites representative of the Argentinean Pampas. For each site, the sowing date was adjusted to avoid frost and heat events at flowering, based on historical probability. The critical period was the more sensitive crop phase (shortened by 0.6d decade−1) for the observed asymmetric warming; regional minimum temperature trend of ca. 0.14 and 0.16°Cdecade−1 in wheat and barley, respectively. Wheat and barley yields declined across the region between ca. 2% and 9% per °C increase in the minimum temperature during the critical period, linked to lower cumulative radiation capture as a result of a shorter crop phase and lower incident radiation due to displacement towards winter. Regional variability in the simulated yield response to the observed night warming was mainly explained by differences the response of incident solar radiation during the critical period to the minimum temperature increase. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Agricultural Systems Elsevier

Warm nights in the Argentine Pampas: Modelling its impact on wheat and barley shows yield reductions

Loading next page...
 
/lp/elsevier/warm-nights-in-the-argentine-pampas-modelling-its-impact-on-wheat-and-IROu77DAIw
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0308-521x
D.O.I.
10.1016/j.agsy.2017.12.009
Publisher site
See Article on Publisher Site

Abstract

Efforts to anticipate how climate change and variability will affect future crop production can benefit from understanding the impacts of current and historic changes. This study aimed to quantify and compare the impact of increased night temperature on potential yield and phenology of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) crops modelled using APSIM with historical climate series (1961–2014) in sites representative of the Argentinean Pampas. For each site, the sowing date was adjusted to avoid frost and heat events at flowering, based on historical probability. The critical period was the more sensitive crop phase (shortened by 0.6d decade−1) for the observed asymmetric warming; regional minimum temperature trend of ca. 0.14 and 0.16°Cdecade−1 in wheat and barley, respectively. Wheat and barley yields declined across the region between ca. 2% and 9% per °C increase in the minimum temperature during the critical period, linked to lower cumulative radiation capture as a result of a shorter crop phase and lower incident radiation due to displacement towards winter. Regional variability in the simulated yield response to the observed night warming was mainly explained by differences the response of incident solar radiation during the critical period to the minimum temperature increase.

Journal

Agricultural SystemsElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial