VNN3, a potential novel biomarker for benzene toxicity, is involved in 1, 4-benzoquinone induced cell proliferation

VNN3, a potential novel biomarker for benzene toxicity, is involved in 1, 4-benzoquinone induced... Benzene is widely employed in the field of production, and its toxicity on biological systems has received increasing attention. Cell proliferation is a major life characteristic of living organisms. KLF15 and NOTCH1 are mature and classical genes in cell proliferation studies, particularly in the area of tumor investigation. The aim of this study was to investigate the effect and mechanism of VNN3 on cell proliferation induced by 1,4-benzoquinone (1,4-BQ), an important metabolite of benzene, and obtain a sensitive biomarker for the hazard screening and health care of benzene exposure. Normally growing AHH-1 cells were cultured in vitro and were incubated with different concentrations of 1,4-BQ (0, 10, 20, and 40 μM) for 24 h. A CCK-8 assay was used to assess the cell viability, whereas EdU was used to detect the cell proliferation of AHH-1 cells. The expression of VNN3, KLF15 and NOTCH1 was detected by real-time PCR. Moreover, a lentiviral model was constructed in AHH-1 cells to interfere with VNN3 expression. The results showed that 1,4-BQ clearly increased the expression of VNN3. Moreover, 1,4-BQ dose-dependently inhibited cell proliferation and caused increased KLF15 expression; in contrast, the NOTCH1 expression decreased in AHH-1 cells. Furthermore, following interference with the VNN3 expression, the cell proliferation inhibition and the expression of KLF15 and NOTCH1 were rescued. To further investigate the action of VNN3 in benzene hematotoxicity, we assessed it in benzene-exposed workers. The results showed that there was a remarkable correlation between the VNN3 expression and hemogram, which included RBC, NEUT and HGB. In addition, analysis of the KLF15 and NOTCH1 expression showed that the VNN3 expression was related to cell proliferation, which was consistent with the in vitro results. In conclusion, VNN3 influences cell proliferation induced by 1,4-BQ by regulating the expression of KLF15 and NOTCH1. VNN3 may represent a potential biomarker of benzene toxicity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

VNN3, a potential novel biomarker for benzene toxicity, is involved in 1, 4-benzoquinone induced cell proliferation

Loading next page...
 
/lp/elsevier/vnn3-a-potential-novel-biomarker-for-benzene-toxicity-is-involved-in-1-ji0QlYCSdG
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.10.087
Publisher site
See Article on Publisher Site

Abstract

Benzene is widely employed in the field of production, and its toxicity on biological systems has received increasing attention. Cell proliferation is a major life characteristic of living organisms. KLF15 and NOTCH1 are mature and classical genes in cell proliferation studies, particularly in the area of tumor investigation. The aim of this study was to investigate the effect and mechanism of VNN3 on cell proliferation induced by 1,4-benzoquinone (1,4-BQ), an important metabolite of benzene, and obtain a sensitive biomarker for the hazard screening and health care of benzene exposure. Normally growing AHH-1 cells were cultured in vitro and were incubated with different concentrations of 1,4-BQ (0, 10, 20, and 40 μM) for 24 h. A CCK-8 assay was used to assess the cell viability, whereas EdU was used to detect the cell proliferation of AHH-1 cells. The expression of VNN3, KLF15 and NOTCH1 was detected by real-time PCR. Moreover, a lentiviral model was constructed in AHH-1 cells to interfere with VNN3 expression. The results showed that 1,4-BQ clearly increased the expression of VNN3. Moreover, 1,4-BQ dose-dependently inhibited cell proliferation and caused increased KLF15 expression; in contrast, the NOTCH1 expression decreased in AHH-1 cells. Furthermore, following interference with the VNN3 expression, the cell proliferation inhibition and the expression of KLF15 and NOTCH1 were rescued. To further investigate the action of VNN3 in benzene hematotoxicity, we assessed it in benzene-exposed workers. The results showed that there was a remarkable correlation between the VNN3 expression and hemogram, which included RBC, NEUT and HGB. In addition, analysis of the KLF15 and NOTCH1 expression showed that the VNN3 expression was related to cell proliferation, which was consistent with the in vitro results. In conclusion, VNN3 influences cell proliferation induced by 1,4-BQ by regulating the expression of KLF15 and NOTCH1. VNN3 may represent a potential biomarker of benzene toxicity.

Journal

Environmental PollutionElsevier

Published: Feb 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off