Vitamin B6 protects primate retinal neurons from ischemic injury

Vitamin B6 protects primate retinal neurons from ischemic injury Vitamin B6 derivatives protect the retinal neurons from excitotoxic injury in vitro. However, their in vivo role in a process involving excitotoxicity, such as ischemia, remains unknown. We studied potential protective effects of pyridoxal 5′-phosphate (PLP) and pyridoxal hydrochloride (pyridoxal) on the retinal neurons in a monkey model of transient global ischemia. Daily intravenous injections (15 mg/kg) of pyridoxal and PLP were performed for consecutive 10 days. On the sixth day, whole brain complete ischemia was produced by clipping the innominate and the left subclavian arteries for 20 min. The monkeys were sacrificed 5 days after ischemia and their retinas were processed for histological analysis. The ischemia induced a marked cellular injury in the retina as shown by the loss of ganglion cells and the reduction of thickness of the ganglion cell, inner plexiform, and inner nuclear layers. PLP significantly prevented the ganglion cell loss and the reduction of thickness of the ganglion cell layer. Pyridoxal significantly prevented the ganglion cell loss as well as the reduction of thickness of ganglion cell, inner plexiform and inner nuclear layers. These results suggest that PLP and pyridoxal counteract the postischemic neuronal death in the adult primate retina, offering a potential for a novel pharmacotherapy of retinal ischemic injury. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Research Elsevier

Loading next page...
 
/lp/elsevier/vitamin-b6-protects-primate-retinal-neurons-from-ischemic-injury-nAjUZf6CY0
Publisher
Elsevier
Copyright
Copyright © 2002 Elsevier Science B.V.
ISSN
0006-8993
D.O.I.
10.1016/S0006-8993(02)02587-8
Publisher site
See Article on Publisher Site

Abstract

Vitamin B6 derivatives protect the retinal neurons from excitotoxic injury in vitro. However, their in vivo role in a process involving excitotoxicity, such as ischemia, remains unknown. We studied potential protective effects of pyridoxal 5′-phosphate (PLP) and pyridoxal hydrochloride (pyridoxal) on the retinal neurons in a monkey model of transient global ischemia. Daily intravenous injections (15 mg/kg) of pyridoxal and PLP were performed for consecutive 10 days. On the sixth day, whole brain complete ischemia was produced by clipping the innominate and the left subclavian arteries for 20 min. The monkeys were sacrificed 5 days after ischemia and their retinas were processed for histological analysis. The ischemia induced a marked cellular injury in the retina as shown by the loss of ganglion cells and the reduction of thickness of the ganglion cell, inner plexiform, and inner nuclear layers. PLP significantly prevented the ganglion cell loss and the reduction of thickness of the ganglion cell layer. Pyridoxal significantly prevented the ganglion cell loss as well as the reduction of thickness of ganglion cell, inner plexiform and inner nuclear layers. These results suggest that PLP and pyridoxal counteract the postischemic neuronal death in the adult primate retina, offering a potential for a novel pharmacotherapy of retinal ischemic injury.

Journal

Brain ResearchElsevier

Published: Jun 14, 2002

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off