Viscoelastic properties of pectin/cellulose composites studied by QCM-D and oscillatory shear rheology

Viscoelastic properties of pectin/cellulose composites studied by QCM-D and oscillatory shear... The interactions between cellulose and pectin polysaccharides in primary plant cell walls are not fully understood, although several recent studies indicate that they might play an important role in wall properties. Studying polysaccharide interactions in planta is challenging, due to the complexity and heterogeneity of plant materials. Therefore, to investigate these interactions and the implications for the rheological properties of cell walls, we have taken a bottom-up approach in which cellulose/pectin composites are created either by adsorption of pectin polysaccharides (arabinan, galactan, homogalacturonan DE 69, homogalacturonan DE 33 and pectin DE 33) on cellulose-coated sensors in a quartz crystal microbalance with dissipation monitoring (QCM-D) or by incorporation of pectin during in vivo cellulose synthesis by Komagataeibacter bacteria. The viscoelastic behavior of the adsorbed layers was analyzed by applying the Voigt model to the QCM-D data, whilst the bulk viscoelastic properties of bacterial cellulose/pectin composites were studied by small amplitude oscillatory shear rheology. Our results show that all of the pectin polysaccharides studied have the ability to adsorb on the cellulose surfaces. The viscoelastic properties of the adsorbed layer varied depending on the substitution and degree of esterification of the pectin polysaccharides. Additionally, oscillatory rheology results showed that all bacterial cellulose-pectin composites had a gel nature (G′ > G″) with moduli varying in line with QCM-D determined viscoelasticity. Our interpretation of the results provides a better understanding of pectin-cellulose interactions and has implications for primary plant cell wall material properties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Food Hydrocolloids Elsevier

Viscoelastic properties of pectin/cellulose composites studied by QCM-D and oscillatory shear rheology

Loading next page...
 
/lp/elsevier/viscoelastic-properties-of-pectin-cellulose-composites-studied-by-qcm-5MUh424bmG
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0268-005X
eISSN
1873-7137
D.O.I.
10.1016/j.foodhyd.2017.12.019
Publisher site
See Article on Publisher Site

Abstract

The interactions between cellulose and pectin polysaccharides in primary plant cell walls are not fully understood, although several recent studies indicate that they might play an important role in wall properties. Studying polysaccharide interactions in planta is challenging, due to the complexity and heterogeneity of plant materials. Therefore, to investigate these interactions and the implications for the rheological properties of cell walls, we have taken a bottom-up approach in which cellulose/pectin composites are created either by adsorption of pectin polysaccharides (arabinan, galactan, homogalacturonan DE 69, homogalacturonan DE 33 and pectin DE 33) on cellulose-coated sensors in a quartz crystal microbalance with dissipation monitoring (QCM-D) or by incorporation of pectin during in vivo cellulose synthesis by Komagataeibacter bacteria. The viscoelastic behavior of the adsorbed layers was analyzed by applying the Voigt model to the QCM-D data, whilst the bulk viscoelastic properties of bacterial cellulose/pectin composites were studied by small amplitude oscillatory shear rheology. Our results show that all of the pectin polysaccharides studied have the ability to adsorb on the cellulose surfaces. The viscoelastic properties of the adsorbed layer varied depending on the substitution and degree of esterification of the pectin polysaccharides. Additionally, oscillatory rheology results showed that all bacterial cellulose-pectin composites had a gel nature (G′ > G″) with moduli varying in line with QCM-D determined viscoelasticity. Our interpretation of the results provides a better understanding of pectin-cellulose interactions and has implications for primary plant cell wall material properties.

Journal

Food HydrocolloidsElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial