Verification and validation of numerical modelling of DTMB 5415 roll decay

Verification and validation of numerical modelling of DTMB 5415 roll decay The paper presents a numerical roll damping assessment of the intact DTMB 5415 naval ship at zero speed. Free model motions from four experimental roll decays with initial heeling angle of 4.0, 13.5, 19.58 and 24.50 deg, performed previously at the University of Strathclyde, Glasgow, have been analysed and the one with 19.58 deg initial heeling has been chosen for the Computational Fluid Dynamic (CFD) analysis. All calculations are performed using CD Adapco Star CCM + software investigating the accuracy and efficiency of the numerical approach for case of high initial heeling angle of bare hull. In the numerical procedure the verification analysis of mesh refinement and time step was performed with the aim to investigate the numerical error/uncertainty. For grid refinement and time step, validation and verification procedure has been performed according to the Grid Convergence Index (GCI) method. Moreover, to verify the main source of the modelling error/uncertainty, the effect of degrees of freedom are evaluated, comparing the numerical results with the experimental results. Conclusions are identifying best practice for roll decay simulations commenting the accuracy of numerical results and required calculation time. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ocean Engineering Elsevier

Verification and validation of numerical modelling of DTMB 5415 roll decay

Loading next page...
 
/lp/elsevier/verification-and-validation-of-numerical-modelling-of-dtmb-5415-roll-zqSQZpmPpH
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0029-8018
eISSN
1873-5258
D.O.I.
10.1016/j.oceaneng.2018.05.031
Publisher site
See Article on Publisher Site

Abstract

The paper presents a numerical roll damping assessment of the intact DTMB 5415 naval ship at zero speed. Free model motions from four experimental roll decays with initial heeling angle of 4.0, 13.5, 19.58 and 24.50 deg, performed previously at the University of Strathclyde, Glasgow, have been analysed and the one with 19.58 deg initial heeling has been chosen for the Computational Fluid Dynamic (CFD) analysis. All calculations are performed using CD Adapco Star CCM + software investigating the accuracy and efficiency of the numerical approach for case of high initial heeling angle of bare hull. In the numerical procedure the verification analysis of mesh refinement and time step was performed with the aim to investigate the numerical error/uncertainty. For grid refinement and time step, validation and verification procedure has been performed according to the Grid Convergence Index (GCI) method. Moreover, to verify the main source of the modelling error/uncertainty, the effect of degrees of freedom are evaluated, comparing the numerical results with the experimental results. Conclusions are identifying best practice for roll decay simulations commenting the accuracy of numerical results and required calculation time.

Journal

Ocean EngineeringElsevier

Published: Aug 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off