Variability of stress-strain relationship for recycled aggregate concrete under uniaxial compression loading

Variability of stress-strain relationship for recycled aggregate concrete under uniaxial... Uniaxial compression loading tests were carried out to investigate the variability in stress-strain relationship of recycled aggregate concrete (RAC) due to intrinsic variability in properties of recycled coarse aggregates (RCAs). RCAs were selected from a single source to minimize the effects of potential variations in properties of waste concrete. Natural aggregate concrete (NAC) and RAC prisms were designed with different RCA replacement ratios but similar compressive strength. The results show that the RAC prisms have a similar failure pattern with that of NAC specimens. The RAC specimens were however found to have a lower elastic modulus and a higher peak strain. The variability of the peak stress, peak strain, elastic modulus and ultimate strain was found to follow a normal distribution. Based on the collected experimental data, a modified RAC stress-strain model was proposed. The RAC was found to possess a bit more brittle properties than NAC, as indicated by the steeper stress-strain curve's descending branch for the RAC. The variability of RAC stress-strain model was evaluated and the corresponding probability density function (PDF) and cumulative distribution function (CDF) were discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cleaner Production Elsevier

Variability of stress-strain relationship for recycled aggregate concrete under uniaxial compression loading

Loading next page...
 
/lp/elsevier/variability-of-stress-strain-relationship-for-recycled-aggregate-gZzMoCd5BB
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0959-6526
D.O.I.
10.1016/j.jclepro.2018.01.247
Publisher site
See Article on Publisher Site

Abstract

Uniaxial compression loading tests were carried out to investigate the variability in stress-strain relationship of recycled aggregate concrete (RAC) due to intrinsic variability in properties of recycled coarse aggregates (RCAs). RCAs were selected from a single source to minimize the effects of potential variations in properties of waste concrete. Natural aggregate concrete (NAC) and RAC prisms were designed with different RCA replacement ratios but similar compressive strength. The results show that the RAC prisms have a similar failure pattern with that of NAC specimens. The RAC specimens were however found to have a lower elastic modulus and a higher peak strain. The variability of the peak stress, peak strain, elastic modulus and ultimate strain was found to follow a normal distribution. Based on the collected experimental data, a modified RAC stress-strain model was proposed. The RAC was found to possess a bit more brittle properties than NAC, as indicated by the steeper stress-strain curve's descending branch for the RAC. The variability of RAC stress-strain model was evaluated and the corresponding probability density function (PDF) and cumulative distribution function (CDF) were discussed.

Journal

Journal of Cleaner ProductionElsevier

Published: Apr 20, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off