Vaginal temperature measurement by a wireless sensor for predicting the onset of calving in Japanese Black cows

Vaginal temperature measurement by a wireless sensor for predicting the onset of calving in... We evaluated the utility of the continuous measurement of vaginal temperature by a wireless sensor and wireless connection for predicting the onset of calving and for clarifying the relationships among dystocia, calf conditions, and temperature changes at a commercial beef cattle farm in Japan. A total of 625 effective delivery data was collected. The temperature sensor inserted to the vagina on 7 days before the expected due date and collected the vaginal temperature every 5 min. The sensor detected two alerts according to the temperature change, one was the vaginal temperature of 4 h moving average compared to the same time temperature of last two days decreased more than 0.4 °C (Alert 1) and the other was the rupture of the allantoic sac and the dropped sensor temperature reached to the ambient temperature (Alert 2). The detection rates of Alert 1 and Alert 2 were 88.3% and 99.4%, respectively. The average time between Alert 1 and Alert 2 (Time 1) was 22 h, and that between Alert 2 and delivery (Time 2) was 2 h. These results indicated that the continuous measurement of vaginal temperature is effective for predicting the calving time. The necessity of assistance was correlated with dystocia, calf birth weight (BW), sex, and gestation periods. Interestingly, the durations of Times 1 and 2 were also associated with dystocia. The calf BW, sex, and gestation periods affected the length of Time 2. Our findings indicate that the BW of the calf is the most important factor for dystocia risk, and that the continuous measurement of vaginal temperature could become a good indicator for predicting not only the onset of calving, but also the necessity of assistance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Theriogenology Elsevier

Vaginal temperature measurement by a wireless sensor for predicting the onset of calving in Japanese Black cows

Loading next page...
 
/lp/elsevier/vaginal-temperature-measurement-by-a-wireless-sensor-for-predicting-Ku4f0tSeyr
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0093-691X
eISSN
1879-3231
D.O.I.
10.1016/j.theriogenology.2018.01.016
Publisher site
See Article on Publisher Site

Abstract

We evaluated the utility of the continuous measurement of vaginal temperature by a wireless sensor and wireless connection for predicting the onset of calving and for clarifying the relationships among dystocia, calf conditions, and temperature changes at a commercial beef cattle farm in Japan. A total of 625 effective delivery data was collected. The temperature sensor inserted to the vagina on 7 days before the expected due date and collected the vaginal temperature every 5 min. The sensor detected two alerts according to the temperature change, one was the vaginal temperature of 4 h moving average compared to the same time temperature of last two days decreased more than 0.4 °C (Alert 1) and the other was the rupture of the allantoic sac and the dropped sensor temperature reached to the ambient temperature (Alert 2). The detection rates of Alert 1 and Alert 2 were 88.3% and 99.4%, respectively. The average time between Alert 1 and Alert 2 (Time 1) was 22 h, and that between Alert 2 and delivery (Time 2) was 2 h. These results indicated that the continuous measurement of vaginal temperature is effective for predicting the calving time. The necessity of assistance was correlated with dystocia, calf birth weight (BW), sex, and gestation periods. Interestingly, the durations of Times 1 and 2 were also associated with dystocia. The calf BW, sex, and gestation periods affected the length of Time 2. Our findings indicate that the BW of the calf is the most important factor for dystocia risk, and that the continuous measurement of vaginal temperature could become a good indicator for predicting not only the onset of calving, but also the necessity of assistance.

Journal

TheriogenologyElsevier

Published: Apr 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off