Using unit cell simulations to investigate fracture due to compression–tension loading

Using unit cell simulations to investigate fracture due to compression–tension loading Experiments regarding impact against X65 steel pipes show that fracture typically arises in areas subjected to large compressive strains before tension. Fracture surfaces from these areas are brittle in character despite the material exhibiting ductile behaviour elsewhere. Smooth and notched tensile material tests always produced ductile fracture through nucleation, growth and coalescence of voids. The ductile-to-brittle transition seen in the component tests was however recreated in notched axisymmetric material tests, where the specimens were compressed to various levels of plastic strain before being stretched to failure. Increasing compression before tension showed a decrease in strain to fracture as hypothesised, and an increase in the cleavage surface fraction. In an attempt to gain a better understanding of this behaviour, unit cell simulations subjected to tension only and compression–tension loading were carried out. As well as exploring different chosen stress triaxialities, global analyses of the material tests were used to provide an average stress triaxiality for the axisymmetric unit cell simulations. These global simulations were able to represent the material tests with good accuracy. In tension tests where the stress triaxiality was fairly constant (notched tests), the unit cell analyses were able to predict a strain to coalescence within reasonable margin compared with the experimental values. Unit cell simulations including the compressive phase show that the higher the magnitude of the stress triaxiality is during compression, the higher the local stress in the cell, which in turn may trigger cleavage fracture. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering Fracture Mechanics Elsevier

Using unit cell simulations to investigate fracture due to compression–tension loading

Loading next page...
 
/lp/elsevier/using-unit-cell-simulations-to-investigate-fracture-due-to-compression-ttlw9DTFSv
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0013-7944
eISSN
1873-7315
D.O.I.
10.1016/j.engfracmech.2016.04.044
Publisher site
See Article on Publisher Site

Abstract

Experiments regarding impact against X65 steel pipes show that fracture typically arises in areas subjected to large compressive strains before tension. Fracture surfaces from these areas are brittle in character despite the material exhibiting ductile behaviour elsewhere. Smooth and notched tensile material tests always produced ductile fracture through nucleation, growth and coalescence of voids. The ductile-to-brittle transition seen in the component tests was however recreated in notched axisymmetric material tests, where the specimens were compressed to various levels of plastic strain before being stretched to failure. Increasing compression before tension showed a decrease in strain to fracture as hypothesised, and an increase in the cleavage surface fraction. In an attempt to gain a better understanding of this behaviour, unit cell simulations subjected to tension only and compression–tension loading were carried out. As well as exploring different chosen stress triaxialities, global analyses of the material tests were used to provide an average stress triaxiality for the axisymmetric unit cell simulations. These global simulations were able to represent the material tests with good accuracy. In tension tests where the stress triaxiality was fairly constant (notched tests), the unit cell analyses were able to predict a strain to coalescence within reasonable margin compared with the experimental values. Unit cell simulations including the compressive phase show that the higher the magnitude of the stress triaxiality is during compression, the higher the local stress in the cell, which in turn may trigger cleavage fracture.

Journal

Engineering Fracture MechanicsElsevier

Published: Aug 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial